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U Abstract

Although the theory of linear control systems is highly mature, nonlinear control-system design

techniques remain relatively undeveloped. In real-world applications such as vibration suppression

for flexible structures and large angle rigid-body spacecraft maneuvers, nonlinear plants generally

require nonlinear controllers, while linear plants often benefit from the implementation of nonlinear3 controllers in the presence of structured plant uncertainty, actuator constraints, and nonquadratic

performance criteria. This report discusses progress in several areas relating to the role of non-1 linearities in feedback control. These areas include Lyapunov function theory, chaotic controllers,

Statistical Energy Analysis, phase robustness, and optimal nonlinear feedback control.
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U1.0 Introduction

I 1.1 Review of Linear Multivarlable Control Theory

The bulk of current control-system practice is based upon linear control theory. Classical single-

5 loop design methods, whose basic development predates 1960, are widely utilized in practice. For

high-performance multi-loop applications, modern multivariable techniques are finding their way

3 into practice. A broad spectrum of linear multivariable control techniques has reached the graduate

curriculum (see, for example, the in-depth textbook [11). Moreover, the advanced development of

i such methods is reflected in the availability of several computer-aided design packages.

Within modern multivariable control theory there are several major thrusts of development

3 that can be identified. From a state space perspective, the original work of Kalman and others

has led to a rather complete theory of H2-optimal linear-quadratic-Gaussian (LQG) control design

3 [2-4]. Furthermore, an elegant state space theory within a geometric rather than optimization

framework has been developed in [5]. Multivariable extensions of classical frequency-domain ideas

have undergone significant development along a number of paths. For example, classical ideas have

been generalized to the multivariable setting in [6,7], while an optimal design theory based upon a

3frequency-domain (Ho.) criterion was pioneered in [8] and further developed in numerous papers

(see, e.g., [9,10]and references therein). We also note the development of further sophisticated

3 approaches within an algebraic transfer function setting [11,12].

It is also worthwhile reviewing some recent trends in linear multivariable control, namely, robust

3 control and controler simplification. Robust control refers to the need to effect desired closed-loop

performance (e.g., tracking and disturbance rejection) in spite of plant modeling uncertainties.

5 Within classical theory, the related concept of sensitivity plays a key role, while multivariable

problems require more sophisticated approaches. Numerous robust control-design techniques have

3been developed under a variety of assumptions concerning the plant uncertainty. Unstructured

uncertainty is addressable via H. methods [9,10], while specialized techniques are required for

more highly structured plant uncertainty; see, e.g., [13-16,1.20,1.30]. In addition, recent results

concerning the state space solution of Ho problems yield greater unification of state space and

3i frequency domain synthesis techniques [17-19,1.29].

The second trend in linear multivariable control theory we note here involves controller sim-

3 plification issues. While modern design techniques such as LQG theory produce high-order con-

3 Harris Corp. 1-1 December 1990
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3trollers, it is desirable in practice to employ the simplest controller meeting design specifications.

Here, asimplicity" may refer to dynamic dimension, number of digital operations, degree of de-

3centralization, and other considerations affecting implementation, cost, reliability, etc. References

[20-24,1.23,H1.89,II.91] are representative of progress made in this area.

1 1.2 NonlInear Control Theory

3 TNonlinear control theory" refers to control theory in which either the controller or the plant (or

both) is nonlinear. This theory is not as extensively developed as linear multivariable control the-

5 ory. The principal approaches to nonlinear multivariable control design include local linearization,

global linearization, the second method of Lyapunov, variable structure control, optimization-based

methods, and differential-geometric methods. With these general classifications in mind, we can3
identify several advantages of nonlinear control over linear control. In this regard it is useful to

consider three cases in which the theory is applied (see Figure 1.2-1): (s) nonlinear control for linear

plants, (it) linear control for nonlinear plants, and (is) nonlinear control for nonlinear plants.

3The role of nonlinearities in control theory can best be understood by reviewing the assumptions

and limitations of standard linear-quadratic-Gaussian (LQG) theory. As its name implies, LQG

3 theory is based upon three fundamental assumptions (Figure 1.2-2)

" the plant dynamics and measurement equations are linear in both the state and control

3variables
o the performance measure to be minimized is quadratic

" the plant disturbances and measurement noise are additive Gaussian white noise

l In addition to these explicit assumptions the following implicit assumptions are crucial:

3• the plant model is completely accurate

* mean-square control effort is limited

Is1 Under these assumptions, a major result of modern control theory [2] states that the opti-

mal controller is given by the linear controller consisting of the Wiener-Kalman filter followed by

5 the optimal linear-quadratic regulator. Hence in this case nonlinear controllers cannot improve

performance.

3amsHal Corp. 1-2 December 1990
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a NONQUADRATIC COST • ROBUSTNESS
e ACTUATOR SATURATION * LINEARIZATION
e STRUCTURED UNCERTAINTY3 * FINITE SETUNG TIME

3
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I
U

Figure 1.2-1. In nonlinear control theory, the plant and/or controller is nonlinear.
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-- * QUADRATIC COST
* LINEAR DYNAMICS AND MEASUREMENTS5• ADDITIVE GAUSSIAN DISTURBANCES
* NO MODELING UNCERTAINTY3 0 MEAN-SQUARE ACTUATOR BOUNDS
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U
0 LINEAR CONTROLLER IS OPTIMAL

(LQG THEORY)

U

o NONLINEAR DYNAMICS AND/OR MEASUREMENTS
* NONGAUSSIAN, NONADDITIVE DISTURBANCES
* MODELING UNCERTAINTY
* NONQUADRATIC COST
* AMPLITUDE ACTUATOR BOUNDS

I

3 NONLINEAR CONTROLLER IS OPTIMAL

lUPlgmre 1.2-2. Linear controllers are generally optimal for only a narrow class of linear-quadratic-

_3 Gaussian problems.
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Suppose, however, that not all of the assumptions of LQG theory are valid for a given problem,

that is, one or more of the following conditions applies:

* the plant dynamics and/or measurement equation is nonlinear

e the disturbances are either nonadditive or non-Gaussian

* the relevant performance measure is nonquadratic

* the plant model is uncertain

3 control effort is limited by amplitude (L,.) or total fuel (LI) constraints.

In real world applications, of course, al of these conditions apply, at least to some extent. The

actual extent to which each one must be considered is problem-dependent. In each of these cases

there is no reason to expect that a linear controller is optimal or even appropriate. Nevertheless, it is

still desirable for a variety of reasons to seek linear controllers, and much of control theory has been

directed toward this goal. Ultimately, however, we are faced with the following question: When

is it necessary or advantageous to implement nonlinear controllers in place of linear controllers?

Nonlinear controllers will generally entail more difficult performance validation and implementation

complexity (Figure 1.2-3). Furthermore, we note that an additional level of controller complexity

involves time-varying control (for either linear or nonlinear controllers) (Figure 1.2-4). We now

examine the possible benefits of nonlinear controllers.

1.3 Linear Versus Nonlinear Controllers

Let us first consider the problem of nonlinear plant dynamics. Such nonlinearities arise in a

wide variety of engineering applications [25]. Nevertheless, linear control theory has been developed

to deal with large classes of nonlinearities, for example, as bounded by a sector [26-28]. Lure's

problem, the Aizermann conjecture, and the circle and Popov criteria are all traditional control

theory topics dealing with nonlinearities.

In many applications, however, the nonlinearities are well modeled to the extent that their

detailed structure can be exploited in control design. For example, in the case of a single rigid

body we have Euler's equation

J. + +W x Jw =f (u),

where J denotes the moment of inertia, w denotes angular velocity, and f (u) denotes applied torque.

H"TnI Corp. 1-5 December 1990



- GREATER GENERALITY

* IMPROVED PERFORMANCE
FOR MODELING ACCURACY

MORE COMPLEX TO
IMPLEMENT

U HARDER TO VALIDATE

LINEAR
TIME-INVARIANT GAIN SCHEDULED NONLINEAR ADAPTIVET RALE LTI CONTROLLER CONTROLLER CONTROLLER

CONTROLLER

* MORE RESTRICTIVE CONTROLLER CLASS

* PERFORMANCE LIMITED BY MODELING ACCURACY

* SIMPLER TO IMPLEMENT

EASIER TO VALIDATE

DESIGN GUIDELINES

I TRY TO MEET PERFORMANCE SPECIFICATIONS
WITH SIMPLEST POSSIBLE CONTROL LAW

IF SPECIFICATIONS CANNOT BE MET, THEN
INCREASE CONTROL LAW COMPLEXITY AND
ASSESS PERFORMANCE/IMPLEMENTATION/
VALIDATION TRADEOFFS

Figure 1.2-3. Nonlinear controllers offer improved performance, but may entail
greater implementation and validation complexity.
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I3Linear Time-Invariant Nonlinear Time-Invariant

I

L near Time-Varying Nonlinear Time-Varying

I
I
I
U

Figure 1.2-4. Linear and nonlinear controllers may be either time-invariant or time-
varying.
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5 The quadratic gyroscopic term w x Jw is significant in rapid maneuvers involving large structures.

Since the structure of the nonlinearity in this case is crucial, we expect nonlinear controllers to playIa role [29-57].

Next consider the problem of optimizing a nonquadratic performance measure. In this case it

can generally be expected that linear controllers are not optimal. Time-optimal performance leads

to bang-bang controllers, which are nonlinear, while higher-order (polynomial) performance mea-

surs lead to higher-order feedback laws [58-68]. For example, consider the effect of a nonquadratic

performance measure as addressed in [681. As shown in Figure 1.2-5, a super-linear state feedback

(in this case a quadratic control) can efficiently regulate small amplitude signals, even driving the

state to zero in finite time (if one neglects measurement and disturbance noise effects). A theory

3of sublinear control for finite-time control is developed in [69]. An additional performance aspect

is transient behavior [70 which is difficult to capture by means of scalar performance measures.

I There are, however, nonquadratic performance measures for which the optimal controller is

linear. In particular, this is the case for Ho. optimal control. For this problem the goal is to

minimise the worst-case disturbance attenuation over all frequencies. The H.o problem differs

mathematically from the LQG problem due to the modeling of disturbances and error signals as

deterministic L2 functions. Connections with the LQG setting can be established by means of an

exponential-of-quadratic performance functional with white noise disturbances [71-841.

Problems involving uncertain plant models have motivated the subject of robust control theory.

One approach to robust control involves modeling the uncertainty by means of the H,, norm and

then applying Ho. theory to guarantee robust stability and performance. In this case and for

related problems in robust control, it has been shown that nonlinear controllers offer no advantage

over linear controllers [85-90]. Though valuable, these results consider only restricted uncertainty

characterizations (e.g., unstructured uncertainty) [86-88], very special performance measures (e.g.,

Ho performance) [85], or limited definitions of stability (e.g., quadratic stability) [90]. In fact, from

the previous discussion on the optimality of nonlinear controllers for nonquadratic performance

criteria, it is reasonable to conjecture that for a variety of system performance measures nonlinear

controllers can yield better robust performance than linear controllers. In fact, it is even possible

Ithat the controller that solves the robust quadratic performance problem

min{ max o (XTRixZ + UTR 2 U)dt~U(t) I (AA,AB)EU '

i(t) = (A + AA)z(t) + (B + AB)u(t),

Harris Corp. 1-8 December 1990
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5 p-i

I

0 0 1 2 t

I 3p = u u = -21=11= =" EFFICIENT REGULATION FOR LARGE AMPLITUDES

I
p = 1 : u = -2x == EXPONENTIAL DECAY (LINEAR)

I
p 3. : u = -211z- 4 == EFFICIENT REGULATION FOR SMALL AMPLITUDES

U Figure 1.2-5. As shown in [68], nonlinear controls can be shaped to give efficient regulation

for various, selected vibration amplitude regimes.
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3 is a nonlinear controller. Results that indicate that nonlinear controllers can yield improved ro-

bustness properties are given in [91-94].

I An additional advantage of nonlinear controllers is the ability to address actuator saturation

limitations. In practice any electromechanical device used as a control actuator is subject to

limitations on maximum force, torque output, power consumption, stroke, and angular speed limits.

Thus, in reality, control-design optimization must account for constraints on the maximum value

of actuator force or similar constraints on internal signals associated with the actuator dynamics.

The simplest such realistic constraint takes the form of a pointwise bound on the actuator force

3 output, i.e.,
IUItl _< s.,

U where a.,. is the largest physically possible magnitude of the actuator output. The above pointwise

bound is an example of an Loo design constraint and differs crucially from L2 constraints such as

IE[U2] < ,

or

3~c fU (t)dt < 0,

which correspond to power and energy constraints, respectively.

U Figure 1.2-6 illustrates the ramifications of pointwise bounded actuator constraints. Suppose

that the plant is linear except for the physical constraint Iu(t) _< ft.. and that the system is

[] subject to an initial impulse disturbance. If one designs an optimal regulator using the integral

square condition (for analytical convenience) as the constraint on the optimization problem, then3] the resulting controller is linear. Moreover, one can choose linear gains such that the peak actuator

output is less than the physically imposed limit of G... Then (see the top half of Figure 1.2-6),3 following the initial disturbance, all signals, including the actuator output, decay exponentially.

Note that although u(t) just satisfies the physical constraint Iu(t) < fix. for small t, for larger

t, Iu(t)I is small. Thus, in this case actuator capability is wasted. On the other hand (see bottom

half of Figure 1.2-6), it is possible to design a .wblinear feedback control for which the actuator3 uses nearly its full capacity while the system state is driven to zero faster than exponentially. In

fact, it is well known that minimal-time maneuvers actually require bang-bang control. Variable

5_ structure (nonlinear) controllers, which can be viewed as generalizations of bang-bang controllers,

can also be used to control linear systems while efficiently utilizing actuator capabilities.

Harris Corp. 1-10 December 1990
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LINEAR OPTIMAL SATISFYING .fU dt :-2 MAX

I 7 U 4  FOR LARGE SIGNALS
EPONENTIAL MAX- .. \. ACTUATOR

FOR SMALL SIGNA"S u(t)
SMALL -- * ACTUATOR

CAPABILITY WASTEDI3 "SUBOPTIMAL" NONLINEAR CONTROL

ACTUATOR RUN

CAPAWfY BUT

*x

FINTE TME
TO ZERO

NONLINEAR CONTROLS CAN MORE EFFICIENTLY
UTILZE REALISTIC ACTUATOR CAPABILITIES

1 Figure 1.2-6. Nonlinear controllers can utilize actuators more efficiently than linear con-
trollers in the presence of saturation bounds.

3 Haruis Corp. 1-1December 1900
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A specialized class of nonlinear controllers for linear plants is the class of adaptive controllers.

In contrast to Jized-gain controllers, which maintain prespecified constants within the feedback law,

adaptive controllers adjust feedback gains to improve closed-loop stability and performance when

the plant is uncertain. Adaptive controllers generally utilize probing signals to excite the plant

I dynamics and thereby identify plant parameters. Feedback gains can then be adjusted to account

for the identification data. The overall process of identification and adjustment clearly constitutes a

nonlinear control law. Thus, the adaptive control literature can be viewed as a specialized subclass

of nonlinear control, although for historical reasons this categorization is rarely utilized. For our

3 purposes, viewing adaptive controllers as nonlinear controllers is particularly useful. For example,

as discussed above, nonlinear controllers can be viewed as a specialized form of robust controllers

for uncertain linear plants.

The distinction between nonlinear controllers and adaptive controllers has narrowed in recent

3 years with the development of adaptive controllers not requiring explicit probing signals [95-102].

These results show that there exist nonlinear controllers that can stabilize generic classes of sys-

tems characterized by minimal a priori data. Although these controllers are usually thought of as

adaptive since the feedback gains are continually adjusted, the feedback laws are clearly nonlinear

3 controllers of special structure.

1.4 Overview of this Report

The central result of control system analysis and design is Lyapunov's method. The ability

to construct a positive-definite functional that decays along system trajectories is sufficient to

guarantee asymptotic stability. Design via Lyapunov functions need not be associated with the

optimization of a performance measure although, as discussed in Section 5, the converse is often

3 true, that is, optimal design may be predicated on a Lyapunov function. Hence, in our view,

Lyapunov's method ultimately comprises the most fundamental technique in nonlinear (as well as

linear) control theory.

This program is thus focussing on several problem areas relating to Lyapunov theory. The

3 interrelationships among these areas is shown in Figure 1.4-1. In Section 2 we describe progress

in analyzing energy flow in coupled mechanical systems. The results obtained thus far extend the

3 foundations of Statistical Energy Analysis. In Section 3 we apply the results of Section 2 along

with applications to the design of chaotic controllers for enhanced energy dissipation. Section 4 is

3 devoted to progress in developing a theory of robustness due to phase properties. Finally, Section

5 discusses optimal nonlinear control theory.

3 Harri. Corp. 1-12 December 1990
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Figure 1.4-1. The program focusses on several related research problems relevant to nonlinear
control.
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I 2.0 Energy Flow and Statistical Energy Analysis

I It is well known from thermodynamics that energy flows from hot objects to cold objects.

It is less well known, however, that a similar phenomenon occurs in coupled mechanical systems

with modal energy playing the role of temperature. Energy and power flow concepts, often called

Statistical Energy Analysis (SEA), have proven to be useful tools for analyzing linear dynamic

systems [237-249]. Hence this phase of the program is devoted to the further development of these

I ideas to support nonlinear analysis and design. In Section 3 these ideas are used to analyze and

design chaotic feedback controllers.

2.1 Energy Flow In Coupled Dynamical Systems

3 The objective of SEA is to model energy flow among coupled dynamical subsystems. SEA

was originally developed for acoustical analysis involving very large numbers of modes that may

be poorly modeled. Many of the concepts of SEA as applied to high dimensional systems (such as

equipartition of energy) have close connections with statistical mechanics of many particle systems.

Although SEA theory has been widely applied, rigorous analytical results have been available only

for identical couplings or for weak interactions. Under this program we have extended SEA theory

to address an arbitrary number of subsystems with arbitrary coupling.

In this section we summarize results on SEA which are developed in the paper entitled "Power

U Flow, Energy Balance, and Statistical Energy Analysis for Large-Scale Interconnected Systems."

This paper, which contains all details of the results reported here, appears in Appendix C.

I To summarize these results consider the system

I3; = Ax + Gz + w, (1)

where the state z E C", the uncoupled dynamics matrix A is given by

A= -V + j7 + H,

3 v= diag(vi,...,v.)EIR" 'x , vi>0,

H = diag (H,,. .,,) E C"'",

17 diag (fDl,-.., ) E IRxn,

and where G denotes the coupling among subsystems, that is,

GECnx n, G,=O, i=l,...,n.

3 Hatis Corp. 2-1 December 1990
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The additive forcing w(t) is taken to be white noise with intensity V > 0.

The first step of our approach is to note that for an output signal

z = Cz, (2)

I the steady-state mean-square response is given by

3 J = lim lE[z zl (

= tr[CTCQ],
I where

where Q A lim IE[xxI.

It is well known that the steady-state covariance Q is given by the algebraic Lyapunov equation

30 = AQ + QA* + + Q* + V. (4)

In many practical situations it can be argued (see Appendix C) that the principal contribution

to J is due to the diagonal elements of Q. Hence our main result is based on a direct characterization

I of the diagonal elements of Q in terms of V, which is obtained by eliminating the off-diagonal

elements of Q. To do this, we rewrite (4) as

S0 = A{Q} + {Q}A* + {G(Q)} + {(q)G*} + {V}, (5)

0= A(Q) + (Q)A* + (G(Q)) + ((q)G*) + G{q} + {Q}0', (6)

where {.} and (.) denote the diagonal part and off-diagonal part of a matrix, respectively. Here we

3 have assumed for convenience that (V) = 0.

Next, we apply Kronecker matrix algebra to solve (5), (6) for {Q} in terms of {V}. To state

3 the main result define the vector E of steady-state mean-square state energis,

I E= ,

where A Q,,, i 1,...,n, and the vector

-V I

3 HUu Corp. 2-2 December 1990
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which corresponds to {V}. Then we obtain the following consequence of (5), (6):

(;& + P)E =1 , (7)

where

AA diag {2&, - 2Re(HI),...,2Y - 2Re(H.)}, (8)

I and
pnd t T  (O 9 G) 6. [( A (D A ) (D (0 9 a)] -  (0 0 G) . (9)

In (8) and (9), "Re' denotes real part, 9 denotes Kronecker sum, and (, E±, and t denote n 2 x n2

matrices of special structure whose element are ones and zeros. It can be shown that P is real.

To elucidate the meaning of (7) we can write its kth component as

(2vk - 2Re H)Ek + Ilk = Vk, (10)

power di ipated power flow power input
by the kth mode from the kth mode due to external
due to damping to all other modes disturbances

due to coupling

3 where HI has the form

H -- PktEe, Pkt E IR. (11)
L=1

The matrix P can be viewed as a power flow matrix, while relation (10) thus has the form of a

power flow equation. To arrive at an energy balance relation we consider the case in which

I Pkt<O k9t, k,t=l,...,n. (12)

3 This occurs, for example, if the subsystem coupling is sufficiently weak. If, in addition, the couplings

are energy conservative (for example, passive), then it can be shown that

3 P E l Ptl, k=1,...,n. (13)
tos

Then, defining ah'e pt IP, k f t, so that a," > 0, it follows from (11) that

HAI def g - Et). (14)

In other words, power flow from the kth mode to all other modes is the sum of the individual

power flows from mode k to mode t, which are proportional to the energy differences Ek - EL.
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Note that power always flows from more energetic modes to less energetic modes (because of the

nonnegativity of the coefficients OrL). Substituting (14) into (7) yields

I E + ak(E - Et) = (15)
C-1
"vlb

which is an energy balance relation. Equations (10) and (15), which govern energy exchange among

coupled oscillators, are completely analogous to the equations of thermal transfer with the modal

energies playing the role of temperatures.

In physical situations involving nonconservative couplings, we have shown that although (13)

no longer holds, it is still possible in the case of weak couplings to obtain a generalized power flow

proportionality. In this case there exists a set of positive scale factors Dk > 0, k = 1,... n, such

that, withI t A ,Ek, the energy difference power flow proportionality is given by

IIk = E &(tk- EL), (16)

t-1

where &14 A Dtak. Note that (16) is not merely a rewriting of (14) since in general Dk 5 De.

With (16), the energy equation (7) assumes the form of a generalized energy balance relation given

by

Ah + & + (k - 4L) = Vk, (17)
£-1b

where k = 1,... , n. That is, there is a set of re-scaled energies such that (7) looks like the equations

of thermal transfer.

Furthermore, while deriving energy difference power flow proportionality relations, we have

also shown that the explicit expressions given for the power flow matrix P in the SEA literature

are actually first-term approximations in a series expansion for P. Indeed, it turns out that P,

which is given by a complicated expression involving P, D, H, and G, agrees with the customary

SEA expressions for "small! G. This in done by obtaining explicit expressions for the terms of a

series expansion of P in ascending powers of the matrix elements of G.

Since the modal energies obey equations analogous to those of thermal transfer, it might be

expected that if the coupling coefficients Gke are large compared to the modal dampings, then the

energies should be approximately equal, that is,

E(18)
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The paper in Appendix C provides a formulation and proof of this ~energy equipaztitioning" ph.-

nomenon.
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U 3.0 Chaotic Controllers

In Section 2 we explored the notions of power flow and energy balance in interconnected systems.

Our next goal is to apply these ideas to the analysis and design of nonlinear feedback controllers.

3 To do this we need only view the plant and controller as a pair of interacting subsystems. If

disturbance rejection is an objective, then we seek to design a controller that maximizes power flow

from the plant to the controller. Within an H. context this idea has been explored in the recent

paper

D. MacMartin and S. R. Hall, "An H., Power Flow Approach to Control of Uncertain Struc-

tures,* Proc. Amer. Contr. Conf., pp. 3073-3080, San Diego, CA, May 1990.

"I One of the main ideas discussed in this paper is that power flow out of the structure is maximized

to the extent that the controller is able to match the impedance of the plant.

In this section we develop a nonlinear controller that exploits the phenomenon of chaos. Our

3principal goal is to demonstrate that this controller can enhance power flow from the plant to the

controller by introducing nonlinearities that induce broadband spectral properties in the controller.

A power flow analysis is then used to show that energy can be transferred more efficiently between

arbitrary plant and compensator modes. Details of these results are given in 'A Nonlinear Vibration

Control Design with a Neural Network Realization" which appears in Appendix D.

3.1 Turbulence Model for Chaotic Controller Design

IA unique feature of nonlinear systems is the energy cascade mechanism illustrated in Figure

3.1-1. Here, energy originally injected within some lower frequency band can be dispersed to higher

I frequency bands by virtue of coupling among the vibrational modes of the structure. Eventually

the energy is transferred to very high frequencies where it is dissipated into heat by means of

natural structural damping or by the action of an additional energy dissipative control law. Thus,

a nonlinear controller such as illustrated in Figure 3.1-1 can be viewed as a catalyst for transmuting

vibration more rapidly into heat.

The controller illustrated in Figure 3.1-1 can be realized by a purely mechanical device con-

I sisting of a chamber containing a number of particles of given mass that undergo free translational

motion except for collisions with the chamber walls and with one another. This is essentially the
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ENEl CASADES ENERGY EVENTUALLY
INTO H6HER DISSIPATES INTO

FREQUENCY BANDS HEAT AT HIGH FREQUENCYI
" ENERGY CASCADE MECHANISM OFFERS POTENTIAL FOR EXTREMELY

ROBUST, RAPID ATTENUATION OF LOWER FREQUENCY VIBRATION.

I
* SUCH NONLINEAR CONTROLLERS ARE A CATALYST FOR TRANSMUTING

VIBRATION MORE RAPIDLY INTO HEAT.

I
I . COMPENSATOR (BY ITSELF) COULD BE CHAOTIC. BUT WHEN

INTERCONNECTED WITH THE PLANT, ITS DAMPING PERFORMANCE IS

5 EXTREMELY ROBUST.

I Figure 3.1-1. Another unique aspect of nonlinear control is energy cascade via mechanical

turbulence.
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impact-damper control mechanism which received some attention in the 60's to mid 70's (for exam-

ple, in connection with buffet alleviation in aircraft, see [164,165], but which was not subsequently

I pursued because of mechanical implementation difficulties. With present-day high-speed processors,

however, such a nonlinear compensator can be implemented electromechanically using a colocated

5rate sensor/force actuator pair. However, it is not suggested that research be focused on the impact

idea per se. Rather, such devices are mentioned here solely to illustrate the potential of chaotic

compenators and to elucidate some fundamental aspects that might be suitably generalized within

a rigorous design optimization theory. The term chaotic compensator is used because, considered

i by itself, the nonlinear controller displays chaotic motion. For example, suppose that one discon-

nects the chamber from the structure and measures the response to sinusoidal inputs. If there is

3 no energy loss in collisions, then the system will display homoclinic tangles of great complexity.

With some energy los mechanisms, chaotic attractors will result. Thus, the compensator shown

3in Figure 3.1-1, when considered alone, is a chaotic system. However, the intriguing aspect here

is that when this chaotic compensator is interconnected with the plant, its damping performance

is quite effective and extremely robust. It is important for reliable implementation of effective

compensation to understand and exploit the underlying mechanisms involved in this example.

3 3.2 Lyapunov Setting for the Chaotic Controller

Lyapunov theory provides the foundation for devising a controller that emulates the behavior

Iof a chaotic compensator. Consider the plant with dynamics

3 = fi(z) + f2(z)U, (1)

Y = f (z) , (2)

where z E 1W', u E IR', y E MW", and dynamic feedback controller

e = f/ , ( Z. , Y) + M(z.,Y)Y, (3)
iU = - T .01Y) X , (4)

where z. E IR'O. Note that the controller uses only the available measurement y, although the

Iplant is assumed to have a colocated-type symmetry as in a force-to-velocity model of a flexible

structure. We assume that f(') is dissipative, that is,

Z Cop. zT/T(Z)+fT (z)z<0, zxER", x:O, (5)

IHarri Corp. 3-3 December 1990
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3 and that Ii.(,y) is also dissipative for all V E 1R'. In this case the closed-loop system has the

form5 = (), (6)

where

i(,);~ ~~X, [ x)"') ")
and1(p) A f ! (:) - f2(Z)f .(Z.,V) Xc

II-(Z.,y) + 12(Z=,,v)f'(Z)z
with y given by (2). Using the energy Lyapunov function V(i) = jTF it is easy to show thatdV
dV(s) <0 along trajectories of (6).

Let us now specialize to the problem of vibration suppression. Hence consider the plant model

=i 0 zE1R2 , u E IR' (7)

I where
DA diag {D7k} = modal frequencies,

3q diag {qk} = modal damping ratios,

b = modal actuator influence coefficient, b E IR",

with scalar measurement

p= bTz 2. (8)

3 Consider now the compensator

ice=([ + 2a[0 e TZS Ze c[0] y2' (9)

U = -ic([0 eTl=.)y, (10)

I where ze E1R n' >, >O , eT=[ 1 1... 1],

I / ~ = disS 1%},, > 0, i =1.,n,,

-= diag >0,},fl>O,i-1,...,nc,

and
1 01 1 ... I

* S= -1 0 ... >=-ST. (11)

- 1 1 ... O
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3 Note that the plant and compensator are of the form (1)-(4).

5 The choice of feedback controller can be understood by means of Figure 3.2-1. The underlying

idea is to transfer vibrational energy from the structure to the controller as efficiently as possible and

to exploit the natural dissipation of the controller. To do this, the controller dynamics equation (9)

involves an input term proportional to v2 to create higher-order harmonics of the natural structural

, frequencies. These harmonics are uniformly distributed to a portion of x, by means of the vector

- ( 1 ... 1]. The compensator dynamics involve a dissipative linear term [0 _ to

set up its own modes of vibration. In addition, (9) involves a skew-symmetric term S that serves

to uniformly distribute, or 'mix,' motion of all compensator states while performing modulation

(that is, creation of higher harmonics) by means of [0 6 TI1 .. Finally, the control signal given by

I (10) again serves to modulate the measurement y by the compensator harmonics.

The intention of this compensator is to purposefully create chaos within the controller. There

are two principal reasons for this intentional chaos. First, the structure itself has the ability to

dissipate energy by means of the damping associated with its natural modes of vibration. Hence,

by creating higher frequency harmonics, the compensator can efficiently distribute low-frequency

g energy, thereby exploiting the natural structural dissipation to the greatest possible extent.

The second motivation for this compensator structure, as already discussed, is to maximize the

3 exchange of energy between the plant and compensator. Roughly speaking, energy will be trans-

ferred from the structure to the compensator if there is a significant level of impedance matching.

3 The chaotic motion within the compensator serves to establish a broadband spectrum to enhance

impedance matching and thus energy transfer.

3 To numerically demonstrate these concepts, we considered a 40th-order (20 modes between 1

and 20 rad/sec) lightly damped (.2% damping) plant model with a 40th-order compensator utilizing

3 A = 17. To demonstrate the controller characteristics, we considered the closed-loop response from

a nonsero initial condition. Specifically, the lowest frequency mode (1 rd/sec) was assigned an

3 initial amplitude of unity and an initial velocity of zero, with all other modes at equilibrium.

I
I
i Haiti. Corp. 3-5 December 1990

I



I DISTURBANCE

STR1111R

EENERGYI DISSIPATION

3lr CON1.ThecnROLLER sre samcaimfragetnnrydsiain

IwsCr.36 eeb,19



5 .0.

Ilwe322 h iersos ftelws rqec oeehbt ai teuto u
tocatccmenaoIyais
Hari 0 r.13TDcmbr19



I

3 Figure 3.2-2 shows how the amplitude of the first mode is quickly reduced to a low level with the

remaining response composed of broadband motion. In addition, Figure 3.2-3 shows the spectrum

of the measurement signal V(t). This plot shows that the structure undergoes significant vibration

outside of the modal bandwidth (approximately 4 Hz). This motion, which is due to the nonlinear

5 coupling induced by the controller, shows that energy is transferred from low frequency to high

frequency. Since the high frequency modes dissipate energy more efficiently than the low frequency

3 modes (they go to zero like C-&t), the controller serves as an efficient mechanism for vibration

suppression.
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I 4.0 Phase Robustness Theory

H. theory accounts for modeling uncertainty by bounding a weighted Hco norm characteri-

zation of plant uncertainty. The H. norm does not account for phase, however, which can play

an important role in robustness analysis. For example, the magnitude of plant uncertainty can be

arbitrarily large as long as the phase of the uncertainty is such as to avoid instability.

3 Our interest in the role of phase information in robust control is based upon connections to

power Row concepts. As will be seen, power flow and stability analysis involving passive systems can

3 be extremely conservative if a smawB gain (H.) approach is used. What is lacking is the treatment

of phase properties which become manifested in the structure of the quadratic Lyapunov function.

The results described here can be used to guarantee robust stability and performance for both

linear and nonlinear systems.

3 4.1 Positive Real Theory and Structured Lyapunov Functions

As a first step in developing a phase robustness theory, we shall demonstrate a link between

Iphase properties and the structure of the Lyapunov function. Here we are considering Lyapunov

functions of the form

I V(z) = XTp= (1)

3 where P is a positive definite matrix. We shall call V(z) a structured Lyapunov function if P has

internal structure. For example, P may be of the form

PI= PS (2)

where each diagonal block is also positive definite. We may, for example, also require that some of

the diagonal blocks be repeated. Structured Lyapunov equations have been studied in

3 S. Boyd and Q. Yang, "Structured and Simultaneous Lyapunov Functions for Systems Stability

Problems," Int. J. Costr. Vol. 49, pp. 2215-2240, 1990.

3 Now let us consider a simple case of robustness due to phase. Consider the plant

3 x = Ax + Bu, (3)

Y = CX, (4)

SHarri Corp. 4-1 December 1990
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3 with compensator

i. = Az. + Bay, (5)

U = -Cox.. (6)

5 Now assume that the plant is positive real and that the compensator is strictly positive real. By

the Kalman-Yacubovitch (positive real) lemma there exist matrices L, L., P, and P. such that

S0 = ATP+PA+LLT, (7)

PB = CT, (8)

0 = A P. +PcA + LcL, (9)

P.B. = CT. (10)

It is easy to see intuitively why the closed-loop system

SA -BC.
zA, AIBC A. J(11)

is asymptotically stable, namely, because the phase shift of the loop transfer function (note the

sign convention in (6)) is less than 1800. To see this from a Lyapunov function perspective, let P

satisfy

- 0 = T  + 5 + f?, (12)

where JR, R12]
* A=[ R , J (13)

is nonnegative definite. Expanding (12) with

P P= ](14)

yields

0= ATp, + PIA + (B.C)TPT - P12BC + R, (15)

0 = ATp,12 + P12A. + (B'C)Tp2 - PBC. + R1 2 , (16)

0 = ATP 2 + P2 AC - (BC.)T P12 - PI2 BC, + R2 . (17)

If we set

R= LLT R12 = 0, R2 = LL. (18)

Harris Corp. 4-2 December 1990



I then (15)-(17) re satisfied by

PI = P, P12 = 0, P2 = Pc. (19)

3To see that (16) is satisfied note that (8) and (10) imply

(B C)Tp - PBC, = (BcC)Tpc - PBC

-= CTBP, - PBC( (20)
=CT CTCC

--0.

U Hence the Kalman-Yacubovitch conditions yield

which shows that the Lyapunov function for the system "inherits" the Lyapunov function of the

plant and compensator.

To contrast this situation with Ho theory, suppose R1 2 = 0 but that (BcC)TP 2 - PIBC 0.

Then P12 can be suppressed by letting

IIB.1, IIC.11 << 1 (22)

5- or

max Re A(A,) << 0. (23)

I_ However, (22) and (23) correspond to small gain for the feedback compensator. The phase result,

however, does not require either (22) or (23). Thus we have shown that the Lyapunov function

Iguaranteeing stability of this feedback interconnection has a particular internal structure. Since

the stability is due to the phase properties of the plant and compensator, we can thus regard the

Lyapunov structure as a manifestation of the phase aspects.

-- 4.2 17-Bound Theory and Structured Covarnnces

Linear stochastic control theory is based on the second-moment statistic of the state variables.

3 Letting Q denote the state covariance, in the steady state Q is given by the Lyapunov equation

0= AQ +QA T +V. (1)

Suppose now that A is uncertain, that is, A is replaced by A + AA, where AA E U, a given

uncertainty set. Then (1) becomes

0 = (A + AA)QAA + QAA(A + AA)T + V. (2)

HaT Corp. 4-3 December 1990



To address (2) we introduce the notion of an nl-bound which is a matrix function satisfying

3 AAQ + QAAT < 1(Q), for all Q _ 0, AA E U. (3)

That is, n(Q) bounds the uncertain terms in (2). We now consider the modified Lyapunov equation

0 = AQ + QAT + D(Q) + V. (4)

It is now easy to show that if (4) has a solution, then

QAA < Q, for all AA E U. (5)

The choice of D-bound will depend of course upon the uncertainty set U. However, for a given

set U, there may be many D-bounds, and a "best" bound need not exist (they are only partially

ordered). Two D-bounds that are convenient to work with are the linear bound

0(Q) = CQ + a- AQAT (6)I i=1

and quadratic bound

12(Q) = D +Q EQ. (7)

By choosing a special quadratic bound, namely,

1(Q) = .- 2QC TCQ (8)

then (4) enforces an H. norm bound (see [1.29]).

The problem with utilizing bounds such as (6) or (7) is that they may be extremely conservative.

One reason these bounds are conservative is that (3) must be satisfied for all Q _ 0 whether or

not Q is the actual solution to (4). Moreover, these bounds may be conservative if the modeling

uncertainty is large in magnitude but has bounded phase. Our approach to phase robustness theory

was motivated by the stochastic theory developed in [1II.l-I.12]. Using a multiplicative noise model

with Stratonovich interpretation, Hyland proposed the D-operator

(Q) = ~7j[1AQ + A QA T + IQA 1 ], (9)
Jim ..42 i" I2T

where, for a structural model in modal coordinates, each matrix A. is a skew-symmetric matrix

whose structure captures the effect of an uncertain modal frequency. A drawback of (9), however,

Haffi Corp. 4-4 December 1990
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is that II(Q) is indefinite. Thus, in this case the modified Lyapunov equation (4) does not provide

a bound for QAA and thus does not guarantee stability by means of standard techniques.

IIn summary, we note that there is an intricate interplay between phase information, real pa-

rameter uncertainty, and Lyapunov functions. The classical situation shown in Figure 4.2-1 is

thus an extreme case of the more subtle situation addressed in Figure 4.2-2. Further discussion of

these issues can be found in the paper "Real Parameter Uncertainty and Phase Information in the

I Robust Control of Flexible Structures," which appears in Appendix E.

3 4.3 D-Bounds for Positive Real Theory

To exploit the features of positive real transfer functions, we have developed a theory of robust

controller synthesis with positive real uncertainty. The phase-bounded character of positive real

transfer functions entails far less conservatism than small gain or Hco results when addressing real

3parameter uncertainty.

The results obtained thus far are detailed in the paper "Robust Stabilization with Positive

5Real Uncertainty: Beyond the Small Gain Theorem," which appears in Appendix F. This paper

develops a state space theoy of positive real transfer functions in terms of an algebraic Riccati

5equation. This characterization is more direct than the usual KYP characterization and provides

the basis for state space controller synthesis techniques in the spirit of state space Ho, theory.

IMore recently we have linked positive real theory with fl-bound theory by showing that robust

stability and robust H. performance in the presence.of positive real uncertainty are guaranteed by

means of an fl-bound. This connection has ramifications for nonlinear control. To see this, we re-

call that robust stability in the presence of sector-bounded nonlinearities is equivalent to a Nyquist

I circle criterion, which is equivalent to a positive real condition. Thus robustness to positive real un-

certainty provides the means to guarantee stability with respect to a class of nonlinearities. Similar

Iobservations hold for the Popov criterion which also guarantees robustness for sector nonlinearities.

Our results provide the means for going beyond existing results in two respects. First, we can

develop multivariable generalizations of the classical circle and Popov criteria using simplified 0-

bound theory. And, second, our techniques can be used for robust synthesis in addition to analysis

as addressed by standard theory.

I
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I 5.0 Optimal Nonlinear Feedback Control

The methods and results discussed in Sections 2-5 are independent of optimality considerations.

The purpose of this section is to discuss progress in developing an optimality-based control theory

involving nonlinear controllers for linear and nonlinear plants.

As pointed out in Section 2, controller synthesis need not be based upon optimality crite-

3 ria. For example, a controller can be constructed in accordance with a Lyapunov function to

achieve stability, energy dissipation, etc. Nevertheless, there is strong motivation for developing an

I optimality-based theory.

Perhaps the prime motivations for developing an optimality-based theory is the success of

such approaches in linear control theory. The well-known linear-quadratic-Gaussian control theory

(LQG) is the major result in modern optimal multivariable feedback control theory. During the

past decade, LQG theory has been extended to address numerous practical control-design issues

such as disturbance attenuation, robustness, controller order, and pole placement (Figure 5-1). The

3 resulting theory, known as Optimal Projection for Uncertain Systems (OPUS), has been extensively

developed (see the reference list in Appendix B).

3 The second motivation for optimal nonlinear control theory is that it can drive the controller

synthesis procedure within a class of candidate controllers. Specifically, as will be discussed later

3 in this section, we can view a given Lyapunov function as providing the framework for controller

synthesis by guaranteeing local or global asymptotic stability theory for a class of feedback con-

trollers. The actua controller chosen for implementation can thus be the member of this candidate

class that minimizes a specified performance function. The form of this functional is usually closely

3 related to the structure of the Lyapunov function. In LQG theory, for example, the Lyapunov

function is the familiar quadratic function V(z) = zTPz, while the gains are chosen to minimize

3 a performance functional of the form J = tr PV. In summary, then, Lyapunov function theory

provides the framework, while optimization fixes the gains.

5.1 Optimal Nonlinear Feedback Control via Steady-State HJB Theory

The classical approach to optimal nonlinear control is to invoke the Maximum Principle. This

result has been successful in characterizing solutions to problems such as minimum time con-

trol. Since the Maximum Principle does not explicitly guarantee stability via a Lyapunov function

per as and does not directly lead to feedback controllers, we shall not adopt it as our principal

3 Earn. Corp. 5-1 December 1990
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Figure 5-1. Optimal Projection for Uncertain Systems (OPUS) is an optimal linear control theory
that systematically addresses a broad range of practical control design issues.
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I
approach. Nevertheless, we bear in mind that the Maximum Principle does have links with the

Hamilton-Jacobi-Bellman (HJB) approach which we shall consider and to which we now turn.

I Hamilton-Jacobi-Bellman theory has its roots in the classical Hamilton-Jacobi partial differen-

tial equation as well as the dynamic programming technique of Bellman. In its most general form,

the theory involves a partial differential equation whose solution yields an optimal controller. In

recent years, this equation has attracted renewed interest with the discovery of generalized solutions

1 [151,1521.

If, in accordance with practical motivations, we restrict our attention to time-invariant systemsI on the infinite horizon with analytic data, the situation is considerably simplified. In this case the

HJB partial differential equation reduces to a purely algebraic relationship.

To summarize the ideas involved we first consider the problem of evaluating a nonquadratic cost

functional depending upon a nonlinear differential equation. It turns out that the cost functional

can be evaluated in closed form so long as the cost functional is related in a specific way to an

underlying Lyapunov function. The basis for the following development is the paper [60 by Bass

and Weber. A more detailed treatment of these results is given in the paper "Nonquadratic Cost

and Nonlinear Feedback Controls which appears in Appendix G.

For simplicity in the exposition here, we shall define all functions globally and assume that

3 existence and uniqueness properties of the given differential equations are satisfied.

For the following result, let f: WRl" -+ ]W and L: IR' --+ IR. We assume f(0) 0.

Lemma 1. Consider the system

3i(t) = f(z(t)), z(O) = z0, (1)

with performance functional

w* J(zo) =f L(z(t))dt. (2)

Assume that

and assume there exists a C1 function V: Ra --+ IR such that

I v(0)=0, (4)
_-V(z)>o0, z EIVa, x 96o, (5)

L(z) = -V'(z)f(z), z E IR'. (6)
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Then z = 0 is a globally asymptotically stable solution of (1) and, furthermore,

J(Zo) = V(zo). (7)

3 Proof. Let z(t) satisfy (1). Then

_ (Z()) = V(X(t)) = V-'((t))f( ()). (8)

Hence it follows from (6) that
f, V(z(t)) = -L(z(t)).

Now (3) implies that
m V(-(t)) <0o, z(t) 0o.

Since V(z) > 0, z 6 0, it follows that V(-) is a Lyapunov function for (1) and that z(t) -* 0 as

t --, oo. Thus proves global asymptotic stability of the solution z = 0. Now (8) implies that

V(z(t)) - V(Zo) = fo V'(z(e))f(:())de

= - f L(z(.))da.

Letting t -+ oo and noting V(z(t)) --+ 0, it follows that

m -V(Zo) = 0- j
I or, equivalently,

V(:o) J(O). 0

The main feature of Lemma I is the role played by the Lyapunov function V(z) in guaranteeing

stability and for evaluating the functional J(zo). It can be recognized that V(z) is the cost-to-go

function in dynamic programming.

I Let us illustrate Lemma 1 with a familiar example. Consider the linear system

zi= Ax, z(0) =zo, (9)

with cost functional

J(-O) = ZTRx d,, (10)

mHa Corp. 5-4 December 1990
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where R E IR ' is positive-definite. If A is stable then there exists a positive definite matrix

PEC. IR' satisfying

O ATp+PA+R. (11)

Now define
V(z) = 3 Tp, (12)

which satisfies (4) and (5). Furthermore, with f (z) = Az and L(z) = zTRz it follows that

V'(z)f(z) = 2z T PAz

= ZT(ATp + PA)z

=- _zTRz

= -L(z)

which verifies (6). Hence

J3(zo) = z P0o,

which is a familiar result from linear-quadratic theory.

To deal with more general situations, the following lemma, which appears in [60], will be useful.

I Lemma 2. Let A E IR x " be asymptotically stable and let h: IR" -+ IR be a nonnegative-

definite homogeneous p-form (p even). Then there exists a nonnegative-definite homogeneous p-form

3 g: JR" -+ IR such that

'(z)Az + h(z) = 0, x E Mn. (13)

In the quadratic case (13) yields the familiar result. To see this let h(z) = zTRz and g(z) =

3 zTPz. Then (13) becomes
22 T pAz + zTRz = 0,

* or

zT(ATp + PA + R)z = 0,

I which is satisfied by P given by (11). Now consider the nonquadratic cost functional

J(zo) = f [ZTRz + h(z)]dt, (14)

where
rI h(z) = E h2 ,(x) (15)

H -13 Marris Corp. 5-5 December 1990

i



I

and, for P = 1,..., r, h2,: UR" - JR is a nonnegative-definite homogeneous 2Y-form. We continue

to assume that z(t) satisfies (9), where A is stable. Now, let g2v: IR' -. IR be the nonnegative-

definite homogeneous 2v-form satisfying

g2.()A+h 2 .(x)=O, XER", ,,=1,...,,, (16)

and define

g(z) = E 2(z). (17)
V=ll

Note that (15)-(17) implyI '(z)A + h(:)= o., :EIR". (18)

Furthermore, define the positive-definite function

V(Z) = .Tp. + g(Z), (19)

I where P satisfies (11). Now, to verify (6) we note that

V,(z)f(z) = [2 zTp + g'(z)]AZ

= ZT(ATP + PA)z + ,'g;,(z)AzI 9

3 = -L(z). - E

Hence for J(zo) given by (14) we obtain

J(Zo) = V(Zo) = 4zo + g(Xo). (20)

I Next consider in place of (9) the case in which the plant is nonlinear, for example,

I = Ax + u(z), z(0) = zo, (21)

where o(O) = 0 and we continue to assume that A is stable. Again, let g: IR' --. IR be given by

I (16) and (17) and define V(z) by means of (19). It remains only to verify (6). Hence

V'(z) = [2 zTP + g'(:)l[A + .(z)]

= ZT(ATP + PA), + g'(z)Ax + [2 ZTp + g'(X)]o(Z)

i = _[?TR + h(:)] + [2 :TP + gl'(X)](X)

= -{L(z) - [2Z T P + l'(Z)u(X)}.
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Hence we see that (6) is not generally satisfied. However, we can salvage the situation be considering

an auxiliary cost functional

J(zo) f L(x(t))dt, (22)

where

L(z) - L(z) - [(2T P + g'(z)]o(z). (23)

With this modification (3) must be satisfied with L(z) replaced by L(z), that is,

L(z) > [2 zTp + g'(X)]o(z) (24)

In the special case that
[2 xTP + g'(z)]-(z) <_ 0, (25)

I it follows that (24) is automatically satisfied (if (3) is satisfied) and, furthermore,

J(Zo) < i(o). (26)

That is, the auxiliary cost is an upper bound for the original cost.

I By only a slight extension of Lemma 1, we can obtain sufficient conditions for characterizing

optimal feedback controllers Now let f : Wx' R"--. IR', where f(0,0) = 0, let L: W xIRW" -- IR,

and define for p E 1W'"

H(z,p,U) A L(z,u) +pTI(z,u).

Theorem 1. Consider the controlled system

I i(t) = f(W(),U(t)), Z(0) = zo, (27)

with performance functional 00
j(zo,u(.)) A f L(x(t),,u(t))dt. (28)

Assume that there exist a C1 function V: 1R' --* IR and a function 0: I" -- JR" such that

I V(0) =0 (29)
v(z) >0, z ErW, x:A0, (30)

L(z,O(z)) > 0, z E IR", z #60, (31)

H(z,VIr(z),O(z))= 0, x E IR", (32)

H(z,VIT(z),U)>0, zEIR", uEIR'. (33)

Harris Coep. 5-7 December 1990

I



I Then with the feedback control u(-) = #(z()), the solution z = 0 of the closed-loop system is

asymptotically stable andI (zo,#4(z(.)) = V(zo). (33)

I Furthermore, the feedback control u(.) = O(z(.)) minimizes J(zo, u(.)), that is,

J (zo, 4(x(.)) = min J(zo, ,(.)). (34)

Proof. Global asymptotic stability and result (33) follow directly from Lemma 1. We need

Ionly note that (31) can be written as

I ~L(z,O;(z)) =-V(z)f(,O(z)), wE IR,

which corresponds to (6). It remains only to prove (34) using condition (32). For arbitrary u(t)

and for w(t) satisfying (15) we have

I V(w()) = V'((t))f( (), U(t))

[ or
o 0 = -V(z(t)) + V'(x(t))fz(t), u(t)).

I Hence
H L(z(t), u(t)) = -V(z(t) + L(z(t), u(t) + V'(w(t)f(z(t), u(t))

= - (x(t) + H(x(t),V' T (z(t)),u(t)).

Now using (32) and (33) we obtain

IJ(,o, U)) -f [-V(z(t) + H(x(t),V' (z(t)),u(t)idt

=- lim V(z(t)) + V(O) + f H(z(t), V T (x(t)), u(t))dt

- V(Zo) + jo H(z(t),VT (x(t), u(t))dt

I> V(:o)

which yields (33). 0]

The principal feature of Theorem 1 is that the optimal control law u = O(z) is a feedback

controller. Furthermore, this control is optimal independently of the initial condition z0 .
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Now let us illustrate Theorem 1 with some examples. We begin with the simplest case, namely,

the linear quadratic regulator. Hence consider the controlled system

= A + Bu, z() = xo, (36)

with pedormance functional

J(:o,u(.)) = j [zTRz + UTR 2u]dt, (37)

where z E R", u E IR' and where R1 and R2 are positive definite. Define the feedback law

I 4(z) = -R- 1 B T Pz, (38)

where P satisfies

0 = ATP+ PA+ R - PSP, (39)

where S _4 BR-iBT. With u = q(z), the closed-loop system (36) becomes

i=Az, Z(0) = zo, (40)

where I A A - SP, while (37) and (39) can be written as

J(:o, 4(z(.)) = j zT AX dt (41)

and

o = iTP + P + 1? (42)

where A A R1 + PSP. Thus the closed-loop system (40) with cost (41) has exactly the form of

the example considered in (9)-(12). It remains only to show that u = O(z) is the optimal control,

which will be the case if (33) is satisfied. To show this, note that

H(z,V'T (Z),U) = zT'r + UTR 2U + 2 TP(Ax + Bu)

-- zTRlz + UTR 2u + zT(ATp + PA)z + 2zTPBu

= zTpSpz + 2 zT PBu + UTR 2u

= [Rjl TpZ + UIT R2 [R2 1BTPX + U]

I>0.
Note that it is now easy confirm (32) by setting u = O(z) = - I BTpz.
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We now apply Theorem I to an optimal control problem involving a nonquadratic cost. Hence

consider the linear system (35) with cost

SJ(Zo,,.)) = fo [XTRi + h(x) + UTR 2u]dt, (43)

I where h(z) is given by (15). We shall consider a control law of the form

U = (z) = L(Z) + NL(Z), (44)

where 0,(x) and ONL(Z) are linear and nonlinear, respectively. Let 4L(Z) agree with the linear-

quadratic solution, that is,
I *L(Z) A= _pjlBTpz, (45)

where P satisfies

0 = ATP + PA + R, - PSP. (46)

Recall that (46) can be written as

o= i Tp+pA+, (47)

where A A A - SP and,& A R, + PSP.

For the nonlinear control ONL(z) let g(z) be given by (17) where g,(X) satisfies

I g2,(z)Az+h 2 .(z), z IR', L=1,...,r, (48)

which is the same as (16) with A replaced by A. Now define

I *NL(Z) = R B Tg IT(z) (49)

and the Lyapunov function

I V(z) = =TpX + g(X). (5o)

INext note that for L(z, u) as in (43) we have

L(z, O(z)) = xTR 1x + h(z) + OT(z)R 20(x)I = zTIz + h(x) + zTpsg'T(X) + lgI()Sg'T(X). (51)

Furthermore, with u = O(z) the system (36) becomes

x = Ax + B#NL(z), X(0) = Xo, (52)
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Ior

i () =(o) = Xo. (3

Returning to Theorem 1, it is clear that (29)-(31) are satisfied. However, note that

v'(z)f (z, O())= [2 T P + g'(:)j [z - ISgT()

= :T(ATP + PA): + g'(x)iz - ZTPSg(=) - jgI(:)SgI(:)

_ [:TIz + h(:) + ZTpSgIT(X) + g,(X)Sg=T(X)]

- - [L(z, O()) + jg(Z)SgIT(z)],

so that

H(z,V-"(x),$(x)) = -4g'(x)Sg = (x), (54)

which shows that (32) is not satisfied. However, if we define

L(x, u) A L(x, u) + 1g'(:)Sg'(x), (55)

then the auxiliary cost

J(zo, u(.)) A f L(x(t), u(t))dt (56)

J(zo,,,(.)) ( i(z,,,(.)). (57)

Finally, be defining

&(:,vIT(z),u) A L,(z,u)+ vIT(z)f(z,u), (58)

it can be shown that

At(: v =(), ,,) = [U - O(z)1 T R2 [U - O()I. (59)

Hence (33) holds with H(.) replaced by A(.). Consequently,

J(zo,(:(.-)) = V(xo)
= PXo+ g(o) (60)

= min J(o,U(.)).
-(.)

We next consider a special case of the above nonquadratic problem that leads to considerable

simplification. This particular problem was considered in [63]. Suppose we require that V(z) be of3 ~ the form1
V(:) = zTPz + 2(zTMz) 2  

(61)
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3 so that g(x) = (zTMZ)2 where P satisfies (39) and M satisfies

3 o= (A- sp)TM + M(A- SP) + Ri + MSM. (62)

I Then O(z) has the form

O(Z) = -R-'BTpz - Rj- BT (,TMz)M,. (63)

- Next we assume that h(z) is given by

h(,) = (ZTMZ)ZT(Rl + MSM)z. (64)

With these definitions we note that

g'I(Z)iZ - (ZT Mx)2ZTMAX5= (ZTMZ)XT (ATM+ mA)x
= (ZTMZ)ZT(Rl + MSM)z

- = h(),

I which verifies (48). Finally, define

L(x, u) = xT Rix + h(x). (65)

Following the previous development, we see that O(x) given by (62) minimizes J(- 0 , u(-)) defined

5 by (55), where

a L(Z,.) = XTRix + (ZTM,)ZT(RI + MSM)x + (ZTMX) 2 TMSMZ + UTR 2u. (66)

Thus, be minimizing a sixth-order cost functional, the optimal control is a cubic feedback charac-3 terized by a pair of Riccati equations. The cost functional is somewhat artificial since it depends

upon the solution of one of the Riccati equations.

U We have thus shown that the problem considered by Speyer in [63] is a special case of the

optimal nonquadratic cost problem addressed by Bass and Weber in [601. Actually, however, the

I_ formulation of Speyer was a stochastic control problem based upon results of Wonham [153]. This

formulation involves systems of the form

z = Az + Bu + Djw, (67)
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where DIw denotes additive white noise disturbances. (Speyer also considered multiplicative noise

in [63] as well.) These disturbances lead to a modification of (46) of the form

0 = ATP + PA + RI - P$P + (tr MV)M + 2MVM, (68)

Now note that (62) and (68) now constitute a pair of coupled Riccati equations.

3 Having reviewed the elements of a deterministic HJB theory as originated by Bass and Weber,

out next goal is to develop a corresponding theory of stochastic control. Such a theory can be used

for disturbance rejection for persistent disturbances. Our principal goal, however, is to generalize

HJB theory to permit the design of fixed-structure controllers that operate on the available, possibly

noisy, measurements. To our knowledge, no such theory currently exists, while progress in this

direction is crucial for practical application of nonlinear control laws.
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Abstract
It is well known from thermodynamics that energy flows from hot objects to cold

objects. It is less well known, however, that a similar phenomenon occurs in coupled
mechanical systems with modal energy playing the role of temperature. Energy flow among
coupled modes is the subject of Statistical Energy Analysis (SEA). Originally motivated by
problems in acoustics involving numerous vibrational modes, SEA is based upon equations
governing energy flow among individual modes or sets of modes. Such energy flow equations
can be quite efficient in modeling the response of lightly damped structures. This paper

|° has two goals. First, we derive a generalized formulation of power flow which allows
arbitrary coupling of arbitrary strength. Previous theoretical results were limited to either
identical couplings or weak interactions. These new results utilize Kronecker matrix algebra
to derive an energy flow equation involving the diagonal elements of the solution to a
Lyapunov equation. Analysis of the resulting equations, based upon M-matrix theory,
yields generalized energy balance relations in the case of weak but arbitrary (possibly
nonconservative) couplings.
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IEexpectation~oak

or r x r identity matrix

IAI. (k, t)-element of* AE x
Re A, Im A real, imaginary part of A E C'xIA, AT, A* complex conjugate, transpose, complex

conjugate transpose of A E Ct 'x

(A), (A) diagonal, off-diagonal part of A E Crxr (see Section 2)

01I ®,vec, vecd See Appendix B
A 0 A E IRrx8 is nonnegative (each entry of A is nonnegative)



1. Introduction

We are concerned with efficient methods for evaluating the steady-state statistical response of

large-scale linear systems composed of many interconnected, high-dimensional subsystems. This

problem arises from applications involving acoustical response, acoustical/structural interaction,

high frequency vibration of mechanical systems, and dynamics and control of large space struc-

tures [1-25]. To illustrate the problem, suppose that each subsystem is well known and precisely

characterized so that its eigenbasis is known. Then, assuming for convenience a semisimple eigen-

structure, the kth subsystem considered in isolation is of the form

Zk = AkZk + wk, k=,...,r, (1.1)

where, for k= 1,. ,

zk EC'h, AkA diag (A"), AkiEC,

and wl, is a white noise process with Hermitian nonnegative-definite intensity k E Cs x'k. When

the subsystems are interconnected, couplings are introduced among the subsystems in the form of

perturbations to the individual subsystems. The subsystem dynamics in the interconnected case

are given by

ik= Akzk + gkkzk + g"zL+wk, k-1,...,r. (1.2)
t-1
"lb

The matrix gkt E C 1 x 'I, k 9 1, represents the effect of the Ith subsystem on zj, while the

matrix gkk E C", X"k represents an effective shift of AA due to the interconnections. Our goal is to

determine the steady-state second-moment response of the interconnected systems.

In the case of a large flexible structure consisting of several interconnected substructures,

(1.1) represents the kth substructure, while the coupling terms in (1.2) arise from the mechani-

cal interconnections among the substructures. Alternatively, in the case of acoustical/structural

interaction, one wishes to predict the acoustical response of several acoustical spaces separated

by elastic partitions (such as walls). Equation (1.1) then represents the modal dynamics of each

acoustical chamber, while the coupling terms in (1.2) represent the dynamic couplings introduced

by the .lastic partitions. The power flow concept also has close connections with thermodynamics

and circuit theory [26-34].

The problem posed by (1.2) is subsumed in the linear system model

=(-v +jfl)z + (H + G)z + w, (1.3)

2



I.
I

where
x E C4,I
V= diag (Pk), fklE1R, Yb>0, k-1,...I ,

k=l,...,n

17 -A dag (.17k), 17k EIR, k-=l, ...I,

H= diag (Hi,), Hk EC, k=I,...,n,~k=l,...,n
GA~k=O, k=l,...,n, GEC n x n ,

and w is white noise with Hermitian nonnegative-definite intensity V E C n x. The diagonal

matrix - Y +jD E C'x where n = E--, ne is a concatenation of all of the uncoupled subsystems

in (1.1). The matrices H and G represent, respectively, the diagonal and off-diagonal portions of

the perturbations due to subsystem interaction. We assume that the system (1.3) is asymptotically

stable, that is, the spectrum of the matrix - P +in+ H + G is contained in the open left half plane.

To study the steady-state, mean-square response of the system (1.3), suppose y defined by

I = CX (1.4)

is a response variable of interest, where C A [C .. C] E C Then it is well known [35] that

the steady-state mean-square value of y is given by

I lim IE[yI'] tr[C*CQ], (1.5)

where the steady-state covariance Q - limt., ,IE[zz] E Cnxn is determined as the Hermitian

I nonnegative-definite solution to the Lyapunov equation

I = (-v +j)q + Q(-u -jD) + (H + G)Q + Q(H + G)" +V. (1.6)

Note that due to symmetry, equation (1.6) represents 3n(n + 1) scalar equations for the elements~of Q.

ISince (1.6) is a well-known equation with well-established solution techniques [36-38], the

problem would appear to be solved. However, the difficulty in the application mentioned above

is that the total system dimension n may be exceedingi, .arge. For the example involving several

acoustic spaces coupled by elastic partitions, each subsystem (a modest-sized room, say) can have

millions of modes in the audio range. Thus the total dimension n can be of the order of 106 - 107

while the coefficient matrix (-v + in + H + G) is not necessarily either sparse or banded. Thus,

the prediction of vibration response or sound pressure levels via the solution of (1.6) can be very

3



cumbersome indeed. It is thus desirable to develop more efficient methods for estimating quantities

such as IE[1yi 2] which somehow circumvent the huge dimensionality of (1.6).

In this regard, many useful and important results and procedures have been developed. These

are often referred to collectively as "Statistical Energy Analysis," or SEA [1-16]. SEA was developed

for high-dimensional, lightly damped mechanical or acoustical systems for which there are passive

mechanical energy-conservative interconnections among the subsystems. In the notation of (1.3),

(1.4), this means that there is a basis in which H + G is skew-Hermitian, that is,

H= ih, HkEIR, k = 1,..., n, (1.7)

G =-G. (1.8)

In the present paper, we develop results that deal with general coupling terms. These results are

later specialized to couplings restricted by (1.7), (1.8).

The purpose of this paper is to elucidate some of the basic ideas of SEA in rigorous system-

theoretic language and to provide generalizations of certain fundamental SEA results. Before

summarizing these results, let us note that our problem formulation thus far in terms of a Lyapunov

equation as in (1.6) already represents a pbint of departure from the techniques employed in [1-16].

Motivated by the literature on large scale systems theory [39], we utilize Kronecker matrix algebra

[40,41] and M-matrix theory [39,42] as our principal mathematical tools. In an earlier paper [43] we

used similar tools to analyze the stability and performance robustness of interconnected systems.

The results of [431, which were themselves motivated by SEA, thus served as a precursor to the

SEA extensions given in the present paper.

Perhaps the most fundamental tenet of SEA is that quantities such as JE[Iy l2] cab be estimated

or approximately determined solely in terms of the "modal energies". In our notation the modal

energies translate into the real, nonnegative diagonal elements

Ek A = I -,. IE[jzk12] (1.9)

t--oo

of the second-moment matrix Q. For example, if the system is a set of mechanical subsystems me-

chanically coupled, then Eh corresponds to the kine;ic or potential energy of one of the vibrational

modes of a subsystem. In Section 2 we discuss the various conditions under which it suffices to

determine the Ej, in order to evaluate the mean-square response of quantities of iDterest.

Having argued that mean-square response measures of interest can be deduced from knowledge

of the modal energies, a second central tenet of SEA is that it is possible to formulate a set of

4
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n linear equations that involve only the quantities Ek and that are sufficient to determine these

quantities. Note that the diagonal elements of (1.6) give power flow relations of the form

(2ph - 2Re HI.)Ek + H7; = (1.10)

power dissipated power flow power input
by the kth mode from the kth mode due to external
due to damping to all other modes disturbances

due to coupling

where 11,, is given by

1 Th. _ (GAksQ~t + Q,edkt,).

Statistical Energy Analysis asserts that the quantities 17k can be evaluated as linear functions of

the EL's alone so that a relationship holds of the form

THA = Z PktEL, Pk, E IR. (1.11)

Thus, if (1.11) holds then by using (1.10) one need only solve n linear equations for the modal

energies in place of solving the 2n(n + 1) equations corresponding to the n x n Lyapunov equa-

tion (1.6). Relation (1.11) has been demonstrated in several special cases, namely, two coupled

oscillators, n identical oscillators with identical coupling, and n nonidentical oscillators with weak

Iinter-modal coupling [1-6]. In Section 3, however, and without restrictions (1.7), (1.8), we use

Kronecker algebra to deduce directly from (1.6) that the modal energies Ek are determined by an

energy equation of the form

(A+ P)E=V, (1.12)

I where

A A diag (p,,), IAA= 2vA - 2Re HA;, P E IRnx " ,

I Ell,.. Q1

By comparipi (1.10) to (1.12) it can be ,seen that the expression (1.11) for H-/ is precisely the kth

I element of PE. So long as the overall system is asymptotically stable, relations of the form (1.10)

and (1.11) hold regardless of the number of modes or the magnitude of the couplings.

I Further conditions on p + P that arise in the cases of two oscillators, n identical oscillators

with identical coupling, or nonidentical oscillators with weak coupling lead to an energy difference

5
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power flow proportionality as in [11,12]. Specifically, suppose that

Pke:50, k t, k,t=1,...,n, (1.13)

and
n

PA'' =, Pkti, k= 1,...,n. (1.14)
f-1~tok

Then, defining oaki - j ,Pl, k 6 1, so that oue _> 0, it follows from (1.11) that

IITI = L(Ek - Et).(1

Lois

In other words, power flow from the kth mode to all other modes is the sum of the individual

power flows from mode k to mode f, which are proportional to the energy differences Ek - Ee.

Note that power always flows from more energetic modes to less energetic modes (because of the

nonnegativity of the coefficients ork). Substituting (1.15) into (1.12) yieldsIn IkEk + F, UL(Eb - Et) = (1.16)
t- 1
'I'k

which is an energy balance relation. Equations (1.10) and (1.16), which govern energy exchange

among coupled oscillators, are completely analogous to the equations of thermal transfer with the

modal energies playing the role of temperatures.

In physical situations involving nonconservative couplings, we show that although (1.14) no

longer holds, it is still possible in the case of weak couplings to obtain a generalized power flow

proportionality. In this case there exists a set of positive scale factors D > 0, k = 1,..., n, such

I that, with kk A -EA, the energy difference power flow proportionality is given by

'lb= ObU(,. (1.17)I L-m 1y

I where &t A Deobt. Note that (1.17) is not merely a rewriting of (1.15) since in general D1 $ DL.

With (1.17), the energy equation (1.12) assumes the form of a generalized energy balance relation

given by

.tk + Z 6.(E ) Vk, (1.18)

where k = 1,...,n. That is, there is a set of re-scaled energies such that (1.12) looks like the

equations of thermal transfer. This result, given in Section 4, generalizes (1.15), (1.16) to the case

6



of weak but otherwise arbitrary (not necessarily conservative) modal couplings. These results are

5 obtained by means of M-matrix theory [39,42].

While deriving energy difference power flow proportionality relations, we show that the explicit3 expressions given for P in the SEA literature are actually first-term approximations in a series

expansion for P. Indeed, it turns out that P, which is given by a complicated expression involving3 P, £2, H, and G, agrees with the customary SEA expressions for "small" G. This in done by obtaining

explicit expressions for the terms of a series expansion of P in ascending powers of the matrix

elements of G.

Since the modal energies satisfy equations analogous to those of thermal transfer, it might be

Uexpected that if the coupling coefficients Ght are large compared to the modal dampings, then the

energies should be approximateiy equal, that is,

E - (1.19)

Section 7 provides a formulation and proof of this "energy equipartitioning" phenomenon.

At this point, it is evident that this paper deals only with certain deterministic aspects of SEA.

Rigorous exploration and extension of the "Statistical" aspect of Statistical Energy Analysis, which

addresses the possibility of uncertainties in the system parameters and coupling coefficients, will

form the subject of a future paper. Other extensions of the present paper are briefly mentioned in

3 Section 8.
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2. Characterization of System Response in Terms of the Modal Energies

5 Here we examine the conditions under which it suffices to compute only the modal energies

(1.9) in order to estimate response quantities such as limt-.,o IE[I y12]. To carry out the necessary3 calculations, we shall utilize a somewhat unconventional notation for the diagonal and off-diagonal

portions ui a matrix. Specifically, for M E C1"I define

(M {M diag (Mkk), (M) M -{M).
Is=I...,n

3 For convenience, several identities involving these definitic-Is are given in Appendix A.

Next we define the matrix

5and note that
A- diag (A), 

(2.1)

where

Ak A -vk + jf + H.

Then the Lyapunov equation (1.6) becomes

0 = AQ + QA* + GQ + QG" + V. (2.2)

Using the identities of Appendix A to decompose the Lyapunov equation (1.6) into its diagonalIand off-diagonal parts, we obtain. (noting A = {A} and G = (G))

0 = A{Q} + {Q}A* + {G(Q) + (Q)G*} + {V}, (2.3)

0 = A(Q) + (Q)A" + (G(Q) + (Q)G*) + G{Q} + {Q}G" + (V), (2.4)

while (1.5) becomes

3 im M[ y '] = tr[{C*C}{Q}l + tr[(C*C) (Q)]. (2.5)

The underlined terms in (2.4) and (2.5) are zero when V and C*C are diagonal. Furthermore, they

can be neglected when the following conditions hold either separately or in combination:

) The term (V) in (2.4) can be neglected when the modal excitation forces are uncorrelated, in

Iwhich case (V) t 0. This occurs when excitations are spatially distributed with very short

correlation length.
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it) The underlined terms in (2.4) and (2.5) are negligible when vk,vt <<I 12, - 12t , that is, the

case of large modal frequency separation relative to modal damping.

iii) The underlined terms in (2.4) and (2.5) are negligible in the case of a distributed structural

system with very high modal density wherein, for fixed k and for t = 1,..., n, the real and

imaginary parts of GM,G 1 , and VMa have many sign reversals for modes within any narrow

frequency band. These sign reversals essentially cancel out the contributions of (Q) in (2.5)

and the effect of (V) on { Q} in (2.4) (see [13] for details).

When conditions i)-iisi) are satisfied either separately or in combination, we have the approxi-

mate equations

0 = A{Q} + {q}A + {G(Q) + (Q)G*} + {V}, (2.6)

0 = A(Q) + (Q)A" + (G(Q) + (q)a') + G{Q} + {Q)}', (2.7)

lim E[lly I'] = tr[{C*C}{Q}]. (2.8)

These equations are exact when V and C*C are diagonal; they are good approximations under

conditions s)-iis). Note that these approximations have no impact on stability analysis.

The salient feature of (2.8) is that the response quantity involving y can be expressed in terms

of the diagonal elements of Q. As mentioned in Section 1, the diagonal elements QkA: have the

physical significance of either kinetic or potential energies of the vibrational modes. Although we

need only calculate the n diagonal elements of Q (the "system modal energies") to evaluate (2.8),

it is still apparently necessary to solve an n x n Lyapunov equation to obtain all of Q. In fact,

however, we now proceed to use Kronecker matrix algebra to eliminate the off-diagonal part (Q)

from (2.6) and (2.7), thereby producing a system of only n equations determining {Q}, rather than

S the 2n(n + 1) equations that characterize all of Q.

9
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3. Determination of the Modal Energy Equations

Here we show that the decomposed Lyapunov equation (2.6), (2.7) can be reduced to a system

of n equations involving only the modal energies EA, that is, the diagonal elements of Q. To do

this we employ the Kronecker matrix algebra, the basic definitions and identities of which are

summarized in Appendix B. Note that the basic operators are the vec operator, which stacks the

columns of a matrix into a vector, and the vecd operator, which stacks only the diagonal entries of a

square matrix into a vector. Appendix B reviews the definition of the Kronecker product and sum

along with identities (B.1) through (B.10), which are well known [40,41]. The remaining identities

(B.11)-(B.18) are new and their proof is left to the reader. The matrices C and C± are diagonal

projection matrices that allow us to separate the entries of vec M corresponding to the diagonal

and off-diagonal elements of a square matrix M (see (B.13) and (B.14)). We can now define

E . Avecd Q [- (3.1)

1'vecdV= V j [V:] (3.2)

which are real, nonnegative vectors since Q and V are Hermitian nonnegative-definite matrices.

Furthermore, define

A A diag (pak), pk A 2Y.,k - 2Re HA,. (3.3)

and note that u = -(A + A) = -2Re A.

Theorem 3.1. Assume that A + G is asymptotically stable, let Q E Cnxn be the unique

Hermitian nonnegative-definite solution to the Lyapunov equation (1.6), and define the nonnegative

vectors E, 1 E IRn by (3.1), (3.2). IfI A A+ 6±(. ED G)t± is nonsingular, then E and f, satisfy

(A + P)E = f', (3.4)

where i E IRn × n is defined by (3.3) and P E ]RntXt is defined by

p A T(O(D ~e-LA 9A +e.L~ 9 )6-I-16L(OED )J.(3.5)

Furthermore, ; + P is nonsingular and its inverse (u + P)-1 is a nonnegative matrix. Finally,

limn I[l3l1]=ZICI,2 Ek. (3.6)

0 
=1

It



Proof. Applying the vec operator to (2.6) and using (B.7), (B.13), and (B.16) yields

o0= (A 9 A)vec{Q} + vec{G(Q) + (Q)G*} + vec{V}

S(A 9 A)tvecd Q + t (0s G)vec(Q) + Ivecd V.

Next applying the vec operator to (2.7) and using (B.7), (B.14), (B.15), (B.16), and (±(A S A) -U (A (9 A)E±, yields

0 = (A 9 A)vec(Q) + vec(G(Q) + (Q)Ga) + (0 ED G)vec{Q}

= (A 9 A)vec(Q) + (±( e a)eC±vec(Q) + (d e G)Ivecd Q (3.8)

= [A ED A + t±(d ( G)(±lvec(Q) + E.L(d ED G)tvecd Q.

Since A ED A + ±(d ( G)C± is assumed to be nonsingular, (3.8) and (B.14) imply

vec(Q) = -(±[A ( A + ±( e9 G)6±]-C±(C (D G)Ivecd Q. (3.9)

Substituting (3.9) into (3.7) yields

0= [(A (A)( -t(0 G) ±[AeA+t- ±(O(G)ex]-t±(G G)t]vecdQ+t vecdV. (3.10)

Next note that

M3(A 9 A) -= A + A = -/A. (3.11)

Multiplying (3.10) by ET and using (3.11), (B.17), and (B.18) yields

0 IT(O 9 a)e±[A ED A + e±(d ( a)C±]-l6±(O 9 a)t]vecd Q + ved V,

or, using (3.5),

(p + P)vecd Q =vecd V,

which is (3.4).

3 To show that the n x n matrix P defined by (3.5) is real, take the complex conjugate of (3.5)

and use (B.8) and (B.10)-(B.12) to obtain

I = T (G 9 O)±[A e A + eL±(G ED O)$±]-1 ±(h (G e)l

= ITU(0 (D G)UC [U(Ae A)U + e±(C e G)Ue-J.'S&U(O e G)U!

P.11
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Next, to show that 1p + P is nonsingular, note that since V' E IR' is an arbitrary nonnegative

vector, the rank of 1 + P is n. Thus s + P is nonsingular. Furthermore, it can be seen that if V

is the ith column of I, then the nonnegative solution E of (3.4) is the ith column of (A + P)- 1.

Hence (p + P)-' is a nonnegative matrix. Finally, (3.6) follows from (2.8). G

Remark 3.1. Suppose that G is symmetric, that is, G = GT, but not necessarily real. Then

using (B.3) it is easy to show that P (which is real) is also symmetric. Hence in this case p + P

and (IA +,P)-I are both real symmetric matrices.

As a separate result we state the following converse of Theorem 3.1.

Proposition 3.1. _Assume that A49A+tL(O6DG)C_. is nonsingular, let V, , and P be defined

by (3.2), (3.3), and (3.5), and suppose there exists a nonnegative solution E A E IR to

equation (3.4). Then the matrix Q E C' x" defined by

QA diag (Ei)+vec-([Ai$A+±(C( 9G)C]- 1'C)(G)!E), (3.12)

is Hermitian and satisfies (1.6). If, in addition, Vb > 0, k - 1,..., n, and Q is positive definite,

then A + G is asymptotically stable.

3 Proof. The fact that Q given by (3.12) satisfies (1.6) follows by reversing the algebraic steps

leading to (3.4). To show that Q is Hermitian, note that using (B.8)-(B.10) we have

U = diag (E1)+ [vec(E±ILAA+E±L(GeDO)t,]I16(GC IE)I T

= diag (E)+ [vec- 1 (E±[U(A@A)U+ E U(C DG)U±]-±]&U(O GG)UIE)

= diag (E, )+ ]T

i=l,...,n
= diag (E)+vec-'(e[AeA+,C±(CGG)6.±]-1,-((OG)IE)

3s =Q.

Finally, the stability of A + G follows from standard Lyapunov theory [41, Lemma 12.2]. 0

ITheorem 3.1 and Proposition 3.1 show that for the purpose of determining the diagonal entries

of Q, that is, the modal energies E..... , E., equation (3.4) is equivalent to equations (2.6) and

I(2.7). This verifies the tenet of Statistical Energy Analysis that there exists a system of n linear

equations that determine the modal energies alone. Moreover, comparing the kth equation in (3.4)

12
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with the power balance relation (1.10), we now see that Ill., the power flow from the kth mode to

all other modes due to coupling, is given by

Ilk- = aE, (3.13)

where P e IR is the (k,t) element of P. Thus the expression (1.11) is also verified. In the next

section we further explore the structure of H-i, and P to derive a generalization of the energy

difference power flow proportionality (1.15) for weak but arbitrary coupling matrices G.

I
I
t
I
I
I
I
I
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4. Analysis of the Energy Equation: Energy Difference Power Flow

Proportionality

In this section we analyze the energy equation (1.12) to determine conditions under which an

energy difference power flow proportionality holds. Under the assumption that the off-diagonal

alements of P are nonpositive, we obtain a generalized power flow proportionality involving scaled

model energies. In Section 5 we then show that this result holds for weak, but otherwise arbitrary,

couplings. Specializing further in Section 6 to the conservative case involving skew-Hermitian

couplings, we obtain a power flow proportionality involving the actual (unscaled) modal energies.

The development requires several definitions and results from matrix theory [39,42]. A matrix

M E IRnxn is called a Z-matrix if MkL _ 0, k # t k,t = 1,...,n. Note that a Z-matrix

M E IR"' can always be placed in the form

M-= aI- N, (4.1)

where a > 0 and N _! 2 0, N G IR", n. If (4.1) can be satisfied with a 2 p(N) (p denotes spectral

radius), then M is called an M-matriz. If, furthermore, a > p(N), then, since det M # 0, M is

a nonsingular M-matrix. There are numerous (at least 50) equivalent conditions under which a

Z-matrix is a nonsingular M-matrix [42]. We now summarize those conditions that will be used

here. We shall call B E IRnX diagonally dominant if

Bk>ZI BkLI, k=1,...,n. (4.2)

Lemma 4.1. Let M E IR ' be a Z-matrix. Then the following are equivalent:

t) M is a nonsingular M-matrix,

it) M is nonsingular and M- 1 >> 0,

ii' the real part of each eigenvalue of M is positive,

iv) there exists positive diagonaL 2 E IR" such that MD is diagonally dominant.

Proof. See conditions (Nas), (G 20 ), and (M 3s) on pages 134-138 of [421. 0

Returning to the energy equation (1.12), we focus on the coefficient matrix I + P. The crucial

condition that p + P is a Z-matrix will be shown later for the case of weak, but otherwise arbitrary,
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couplings. First we recall from Theorem 3.1 that, under the assumptions of that Theorem, 14 + P

is nonsingular and (i + P)- 1 >> 0. Thus, condition ii) of Lemma 4.1 with M = p + P can be

invoked to yield conditions ij, iii) and iv).

Proposition 4.1. Suppose that the assumptions of Theorem 3.1 are satisfied and assume thatIP is a Z-matrix. Then

s) A + P is a nonsingular M-matrix,

it) the real part of each eigenvalue of i + P is positive,

iv) there exists positive scalars D,..., Dn such that

DII(pk+Pkk)>ZDLIPjj, k=1,...,n. (4.3)
1-1Lob

Proof. First note that since u is a diagonal matrix, p + P is a Z-matrix if and only if P is

a Z-matrix. Since, by Theorem 3.1, (IA + P)- 1 > 0, condition ii) of Lemma 4.1 is satisfied with

M = p + P. Hence conditions s), iii), and iv) of Lemma 4.1 are also satisfied. Now it need only be

noted that (4.3) is equivalent to (4.2) with B =(A+ P)D and D = diagi,= n(Dk). 0-

Remark 4.1. Suppose G is symmetric but not necessarily real. Then by Remark 3.1 P is

symmetric. Since p + P is also symmetric, I + P bas only real eigenvalues. It thus follows from

condition ii) of Proposition 4.1 that A + P has only real positive eigenvalues. Hence in this case

p + P is a symmetric positive-definite matrix.

Corollary 4.1. Suppose that the assumptions of Theorem 3.1 are satisfied and assume that

P is a Z-matrix. Then there exist positive scalars fs, > 0, k = 1,..., n, and nonnegative scalars

&kL O, k t, k,1=1,...,n, suchthat

pE.+Uk- (Ek- EC)--V, k=1,...,n, (4.4)
tots

where k 4Eh, k=1,...,n.

Proof. Using (4.3) of Proposition 4.1, define Ak > 0 by

I
15



Next note that with Ek -  -LEk and, since P is assumed to be a Z-matrix, Pkt - - I Pkt, k ,

the kth equation of (1.12) yields

Dk(pbj + Pjk] - -DtI Pt4 kt = Vk. (4.6)
a-I

Combining (4.5) and (4.6) yields

.ikAh + 'DeI PhdI (kj. - te) = V, (4.7)
4 1I, '

which implies (4.4) with &ke = DL I Pkel •

Equation (4.4) can be viewed as a generalized energy balance relation since it involves scaled

modal energies rather than the modal energies themselves. Furthermore, comparing (4.4) to (1.10)

it follows that

TH = (A, - Dj,k) tk + a ,(t, - 4e). (4.8)

That is, the power flow from the kth mode to all other modes is, aside from the offset term

(AA; - Dk )!tk, proportional to the difference between scaled modal energies. In Section 6 we show

that under conservative couplings (4.8) becomes an actual (nonscaled) energy difference power flow

proportionality. Next, however, we show that P is a Z-matrix under weak coupling.

1
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5. Analysis of P in the Case of Weak Coupling

In the previous section the generalized power flow proportionality was based upon the assump-

tion that P is a Z-matrix. In this section we show that this assumption is valid in the case of weak

but otherwise arbitrary couplings. To do this we expand P in terms of powers of G and then show

that the first term in the expansion is a Z-matrix.

To begin we define for convenience

A=AeA, 9AG@G- (5.1)

so that P defined by (3.5) can be written as

p = tTgd._(A + e.9 .)- 6.9 . (5.2)

For r = 0, 1, 2,..., it is easy to confirm the identity

(A + L~eY 1 = Z(-A-(±e.±e)'A- + (- A eL 9ge-) (A + (r.L9 e-)1 (5.3)

Combining (5.2) and (5.3) it follows that

P -E>P, + .e, (5.4)
1=0

where
,pA iTg e.(- A-1&±9 -J' ) -A1.9i (5.5)

and

e A Teg&(-A-le_ e )r+l(A + e.L9E±)-1e-±.g. (5.6)

Note that llt,.?iI = o(II.A- l (±9&' IIr+s) (5.7)

for 11911 -+ 0 (where II" U1 denotes arbitrary submultiplicative matrix norms). Clearly the error

incurred in approximating P by 0 Pi depends on the size of .- le.±E.. This is consistent

with the SEA literature since A- 16±9LgeL can be viewed as the ratio of modal coupling to modal

damping. For i = 0, 1 we have

po = jTSe±,A-Ie±Lj, (5.8)

p1 = -jT9eA-e_±A-eL&±9 (5.9)
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ILemma 5.1. Suppose that the assumptions of Theorem 3.1 are satisfied. Then

(Po)kk -=-2 Gktcortk, k= 1,...,n, (5.10)

(Po)kt-=-2jGkjLjRe rt, t96k, f,k=1,...,n, (5.11)

(P1)k = -2Re[ GktriGtm.msGmk], k =1,...,n, (5.12)

I= -2R [-- (GjmmicGmLV*gOk +

+Gktr krtdmmtL ,k)], l k, Ik = 1, ... , (5.13)

where

A A-- AL+Ak = IL + m' - (He + R ) + j(fk - ft)]- . (5.14)

Proposition 5.1. Suppose that the assumptions of Theorem 3.1 are satisfied and assume,

furthermore, that lik + I > 0, k : t, k, I = 1,... , n. Then P0 is a Z-matrix. If, furthermore,

I /A;+jAt>O, k$f., k,f=1,...,n, Gk=/O, k-f, k,t= 1,...,n, and uIGh issufficiently

small, then P is a Z-matrix.

f Proof. From (5.11) we have

(,Po)k= -21 kL1 Re rtk

I- Ikl(' p(k + pL)/IrtI'

<0.

Hence, Po is a Z-matrix. If, in addition, /sk + jt > 0 and G,,t $ 0, then (Po)kt < 0. In this case

IGh sufficiently small implies Pt < 0 so that P is a Z-matrix. 0

To understand the significance of Proposition 5.1, consider in place of (3.4) the approximate
energy equation

(p + Po)E = f. 
(5.15)

If uIGh1 is small, that is, the coupling G is weak, then the norm of the residual R0 is of order

IA-16$jE96±II. Hence in this case (5.15) can serve as an approximation to (3.4).

Proposition 5.1 also shows that if ul, + pj >0 and Gkt:A 0, k : t, k,t = 1,...,n, then P

itself is a Z-matrix so that Corollary 4.1 can be applied. Note that if Gkt = 0 then (Po)kt- = 0 and

- thus the sign of P,, depends on higher order terms in the expansion of P,. It is interesting to note

that if Gke = 0 then (PI)kt is also zero so that in this case terms of even higher order play a role.

18
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16. Specialization to the Case of Conservative Couplings

Many physical situations involve only passive or energy-conservative couplings among subsys-

tems. This is the case considered in the SEA literature. To model this situation we assume that H3and G are skew-Hermitian. If V(z) = xz* represents the total energy of the system, then it follows

that energy dissipation along trajectories of the system (1.3) with w = 0 is given by

d V(z) = -2xz'z < 0, 0, (6.1)

3which is identical to the energy dissipation of the uncoupled system. Thus skew-Hermitian coupling

has no effect on the total system energy. To analyze this case we begin with the following lemma

*which corresponds to equation (6) of [II].

Lermma 6.1. Suppose that the assumptions of Theorem 3.1 are satisfied and, furthermore,

assume that G is skew-Hermitian. Then

Pe O, (6.2)

Proof. It suffces to show that ED G) e = 0. Note

(D G) 1)e = (0 E G) 1vecd I,

-= (0 D G)vec{.}

= (6 9 G)vec I,

= vec(G" + G)

1 =0. 0

Since e:0 0, P has a nontrivial nullspace and thus (6.2) implies that P is singular. Note that

3(6.2) can be written as

Pkl = 0, k =,...,n. (6.3)

If, in addition, P is a Z-matrix, then (6.3) is equivalent to

'Phi = Ik = 1,... ,n. (6.4)

19
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I Defining ot =IPkLI= -Pkt, k t, k,t= 1,...,n, it thus follows from (1.11)

n

13 = aoe(E - EL). (6.5)

t h

Using (6.5) we can now obtain an energy difference power flow proportionality as a specialization

of (4.4). This results is obtained directly and not by means of M-matrix theory which was used to

I derive (4.4).

Proposition 6.1. Suppose that the assumptions of Theorem 3.1 are satisfied, assume that P

is a Z-matrix, and that C is skew-Hermitian. Then with u,.c4  IPkLi, k # t, k,t n, it

follows that

I kEk + okjr(Ek-Ee)=Vk, kI=1,...,n. (6.6)

I Proof. Equation (6.6) is the kth equation of (3.4) using (6.4). 0

3 Remark 6.1. Proposition 6.1 does not state the ljk > 0, which is needed for (6.6) to have the

physical interpretation of an energy balance relation. Note, however, that in (4.4) the coefficient3Ah was shown to be positive by means of the diagonal dominance characterization of nonsingular

M-matrices. Invoking this condition here would lead to a scaled energy balance relation in place ofE (6.T).

Remark 6.2. Suppose in addition to the assumption that C is Skew-Hermitian, we assume

that Re C = 0. Then C = , where G is a real symmetric matrix. Consequently, C is symmetric

and thus Remark 3.1 implies that P is symmetric. Hence oke = ot which shows that the power

3 flow from the kth mode to the Ith mode is equal to minus the power flow from the tth mode to the

kth mode.

I
I
I

I
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T. Equipartition of Energy

In the case of conservative couplings as considered in Section 6 we can show that energy

equipartition occurs in the limit of strong coupling. Hence assume that G is a fixed skew-Hermitian

3 coupling matrix and scale G by 'y > 0 so that (1.12) is replaced by

(A + P (Y)) E = ', (7.1)

-- where

Ap) _ 9'tTg.[A + _f._±q]-19g (7.2)

We are interested in evaluating

We sketch the main steps of the derivation.

It can be shown that

.=lm(A + 'YP) 1 V. (7.4)

Now assume G is symmetric so that P is symmetric. Then by Corollary 7.6.3 of [45] it follows that

liM(A + -,P)-1 = A-1 --- 1Pp2-i (p-i P2-)+/- (7.5)

where ( )+ denotes Moore-Penrose generalized inverse of P (or Drazin generalized inverse since P

is symmetric). Now suppose that G is also skew-Hermitian. Then by Lemma 6.1, Pe = 0 so that

-piP-0 ipie = 0 (7.6)

INext suppose that P is a Z-matrix. Then it follows from Lemma 6.4.1 of [42] (by setting p = eI)

that P is an M-matrix. Next assume P is irreducible, which is the case if all modes are mutually

I coupled. Then, since P is a singular irreducible M-matrix, it follows from Theorem 6.4.16 of [42]

that rank P = n - 1. Thus the null space of P is the one-dimensional subspace spanned by e. Now

* it can be seen that

I - i- eeTpi (7.7)= eTp e

I Hence (7.4), (7.5), and (7.6) yield

= C e~To. =Crl (I.b)I ee eC e pe

Hence
-- eT1?r

i = 2 ="'=n =V (7.9)
eTpe'

which is an equipartition of energy.

* - 21
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8. Concluding Remarks

There are several issues and questions that remain to be explored:

1. How restrictive is the assumption that AEA+E±(0 9G) .. is nonsingular? Can the inverse of

this matrix be replaced by the inverse of a matrix of dimension (n2 - n) x (n2 - n) to account

for the rank of (±?

2. It may be possible to redevelop the theory with real (as opposed to complex) models by allowing

nonscalar blocks in the interconnection structure. The block Kronecker product [461 may be

useful for such a formulation.

3. Further quantification of conditions i)-iis) of Section 2 may be useful. The theory may also be

extendable to the case (V) 5 0.

4. It may be possible to develop transient (as opposed to steady-state) results for power flow.

5. It is well known that power flow can be modeled by time-averaging the unforced response of

the system. Such a dual theory may provide further insights into the power flow phenomenon.

Note that a time-averaging theory may require a dynamic model that is conservative rather

than asymptotically stable.

6. Further analysis may reveal more general conditions under which P is a Z-matrix, particularly

for the case of strong coupling.

Acknowledgement. We wish to thank Linda Smith for transforming the original manuscript

of this paper into TEpX.
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I Appendix A. Identities Involving {-} and (.

For matrices A, B E C" x , the following identities are satisfied:

A {A} + (A), (A.1)

A--A} (A) =0, (A.2)

A= (A) {A} = 0, (A.3)

{(A)} = 0, ({A}) = 0, (A.4)

{(A){B)} = {(A}(E)} = 0, (A.5)

{AB} = (A}{B} + (A)(B)}, (A.6)

((A){B}) = (A){B}, ({A}(B)) = {A}(B), ({A}{B}) =0, (A.7)

(AB) = {A}(E) + (A){B} + ((A)(B)). (A.8)

Appendix B. Kronecker Matrix Algebra, Definitions and Identities

The following are basic definitions and identities:

vec and vec - 1 Operators: For A E C(nxm,

A11

A 21

I: AA9
AZ2

vec A- A22  vec- 1 (vec A)= A

Alm

5vecd Operator: For A E C xn

vecd A A .

23 L A,,, J
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HKronecker Product: For A E Cn~ and B E CpXq,

[AliB A 12 B ... AimE 1

AQBA- A 2 1B A22B ... A 2mB fl~np Xmq

AnjB1 A. 2 B ... Anm.B]

Kronecker Sum: For A E Cox and B (= cmxm,

A EDB A A04, + I BE Cn ,Xnn

Kronecker Algebra Identities: For compatible complex matrices A, B, C, D:

(A +B) 0C =A®00C + B®C, (B.1)

A (9(B +C) = A0B + A 0CS (B.2)

(A 0B)T = AT 0BT, (A 9B)T = AT (DBT, (B.3)

(A®0 B)(C 0 D) = (AC) ® (BD), (B.4)

(A®0 B) -=A-' 0 B-', (B.5)

vec ABC =(C T (9A)vecEB, (B.6)

vec(AB + BC) = (CT @ A)vec B. (B.7)

I Define the following special vectors and matrices whose dimensions will be inferred from the context

in which they are used:

C, column vector whose rth element is 1 and which is zero otherwise,

E, matrix whose (r, a)-element is 1 and which is zero otherwise (E, - e eT)

E, Err, where E 1, is square,

U E4I .®r (& e2 6 E. (&E" , A

The following identities hold for compatible matrices A, B:

U1= UT = U, (B.8)

I 24



Ivec Ar T- Uvec A,(B)

AOB=U(BOA)U, AeB=U(BE@A)U, (B.10)

UeLU = e-, Ue 1.= C.U, (B.11)

vec{A = ^Tec A u= (e, (B.12)

I vec(A) = t.vec A = EvecA), (B.13)

Ivec{ A) = t vecd A, (B.16)

tt= r, (B.17)

IT = t.(.8
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1. Background and Motivation The physical significance of E. is that it is the time average of the

The nonlinear compensator design introduced in Section 2 and total mechanical energy (kinetic + potential) associated with the
subsequently explored in the remainder of the paper was initially kt h plant mode.
motivaed by the problem of synthesising control algorithms for Accordingly herein, E is termed the k'h plant mode energy.
vibration suppression in large flexible structures. Thus, to provide S*-i/ly, we deMane the "k "compensaor mode energy*:
the basic background for the present development, consider a flex-
ible structure instrumented, for vibration control purposes, with 1 < +
electromechanical actuators (to provide control forces) and elec- 2 , >

tronic seasor (to provide measurements of structural motion used which may also be interpreted physically as the electromagnetic
to construct appropriate drive signals for the actuators). In terms energy stored in the inductive/capacitive elements of the analog
of modal coordinates, the structural plant model may be given as: controller electronics.

[_ . =0 ( :1 )rM2.1The system dynamics can be understood in terms of the energy
-on -27i + [ o 2 I(1) sharing and power flow between structure and controller. It is

known quite generally that equations of motion can be formed for
where the determination of the Ek's and 4's alone. To illustrate this,

consider an inherently stable form of the linear control law:
n_ dig {/k} - modal damping ratios KD = 0, Kv : T;

b modal ftor i equence coefficients, where for simplicity, FD = 0, Fv J gI (u )

we consider only one actuator so that b E i' where P is a real nonnegative constant and E IR". This control
Agai, fo siplicty i th preent xpoitio, wesupose hatis stable for all b 4E !R'"

, & E IU'" because ZTZ + T I is a Lyapu nov
Again, fsimplicity in the present exposition, we suppose that function for the closed-loop system. Applying the principles of Sta-

there is one rate sensor, collocated with the actuator. Then the tistical Energy Analysis jI], we obtain the following (approximate)
sensor output, y, is given by: equations-of-motion for the plant and compensator modal energies:

= bT (2) dEk = -2llklkEk + hd(t - E) (7.a)11The actuator input signal, uis generally synthesized from the e

measurement signal, y. The generic form of a linear controller is: dc 1,..., n

tu = -2klt ti + - t (7.)
k= 1,...,ne

where 1 = 11
2

", is the state vector of a dynamic compen- where:

sator. Assuming analog (continuous time) implementation of the i17k ,i + i , (
controller, . evolves according to: 2 L( "n +,. (. - e)2)] (8)

:= 0 _ ],+[oFJy (4) (7) is a set of power balance relations displaying the way in
-) 2

6 which the feedback gains meditate the exchange of energy among
where KD, Kv, FD, Fv are constant gain matrices and the plant and compensator modes. (7.a), for example, states that

the rate of change of the kthplant mode energy equals the sum of
f = dias (Att), ). > 0, 2 I .... n the power loss due to dissipation (-21fllkEk) and the net power

flow from the kihplant mode into all the compensator modes
, >0, 1 Eh.... E)). The net power flows are seen to be propor-

It is mcompensator consists of a collection tional to the energy differences and, because of the nonnegativity

of oscillatory modes, as does the plant. As will be seen, to be of the coefficients ake, power always flows from the higher energy
effective, moe the ompensatorpmodalequncies,1wi t stn, o bmode to the lower energy mode. This energy exchange is more

etivthe compensator modal frequencies, , must stand rapid, the larger is the power-flow coefficients rke. An efficient lin.
certain relationship to the plant frequencies. ear controller design achieves its results by making the a 'as large

To probe some of the limitations of linear compensation for as possible, to facilitate energy transfer from plant to compensator,
structural vibration suppression, we first note that the action of the and by choosing the ,3's ( the compensator modal damping ratios)
compensator can be understood in terms of its effect on the energy somewhat larger than the Y's, thereby speeding Up the dissipation
of vibration. As a measure of the amplitude of the k|'vibration of the energy transferred to the compensator.
mode, define: Equation (8) shows that the power flow coefficients are in-

<i- <z > (5.,a) herently nonnegative and are sharply peaked functions of the fre-
quency separation, 1 .A - h , between plant and compensator

where < -> denotes a time average over several periods of vibration, modes. Thus, efficient linear control design (via Liiear-Quadratic-

Gaussian design, for example) maximizes the ake's by choosing
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the t) to nearly match the plant mode frequencies. This feature energy low equations analogous to (7). These results are given in

of quadratically optimal design, while it confers great efficiency, Section (4).

is also the source of major limitations. First, designed-for per- 3. Numerical Simulations for an Example
formance can be achieved only if the plat modal frequencies are
accurately estimated in advance. In any cue, a parsicular plant For preliminary invetigion of the compensator (), (10), we
mode exchanges energy efficiently only with the compensator mode performed numerical simulations for a particular example of the

that matches it frequency. structural plant (1), (2). The example chosen is a string extended
along z E [0, LI, held fixed at both ends with uniform tension T.

The primary question addressed here is: Is it possible, by re- The potential differential equation for the lateral deflection, 15(z, t)
placing the coastan t ains in (8) by functions of V and/or 9, to is:
create a nonlinear compensator that achieves mne efficient power -2 _2
low between plut mo.4as and compensator modes - i.e., ener t2  T.-_ +/(z) (11)

exchange that is nearly independent of the modal frequency differ- w(0) - w(,) - 0
ences and that permts large power tow from any one plant mode
simultaneously to all compensator modes? In the following Sec- where p is the constant lineal mas density and f(z) is the force
tions, we propose a nonlinear compensator design and investigate distribution due to a single control actuator. The modal decompo-

the design via both numerical simulations and analysis. Although sition of this system has the form:
the results are by no means complete, these exploratory investiga-
tions indicate an -ffirmative answer to the above question. w(z, t) = 'a(z)W (t) (12)

We find that, independently of plant modelling errors, the non-

linear compensator provides very effective vibration suppression.
Moreover, the compensator can be viewed as the interconnection ( dzx* = 1)

of very simple modular units and its effectiveness increases in pro- 0

portion to the number of modules. This raises the question: Can fix
the proposed nonlinear compensator be realised in a neural net? 'k(Z) -- V sinkrl

Accordingly, we demonstrate, in Section 5, that the nonlinear com-

pensator can be implemented as a neural net with analog neurons, where, assuming uniform proportional damping, the modal coordi-

2. A NonlInea Compensator for Structural Vibration nate Ia, satisfy:

S uppression 6k + 2 n/ k, t, +-1712. wflf = L d ., ( .lf( ) (13)

With plant model (1) and (2), let us consider, in place of the
linear controller (3), (4), (6), the nonlinear controller-.

Now, we nondimensionalise variables so that / I and

jvft and suppose that 1(z) arises from a point force actuator

i=i~ %~ ~4~'(10) locaed at z = L. Then:

where: % + 2'P17h bt + fjl, wh = bk u (14)

6T (,i. 1) A : k

In effect, we have replaced a in (6) by icy where y is the sensor bk = sin krta
measurement signal (2), and a is again a nonnegative constant
whose magnitude indicates the controller 'gain.' We now study Finally, assuming a collocated sensor and defining the plant state

the dynamics of the closed-loop system defined by (1), (2), (9), as zT A (17 w ... ,fl,, .... w.), the equations of motion

and (10). are found to be identical in forms to (1) and (2) with:

The intuitive reasoning behind the choices (9). (10) is as fol-
lows. First, although we retain the modal character of the linear lk = k; k = 1...,n

compensator -i.e., the term - 2 , the feedback gains b = Join ram in ro5

are now chosen proportional to the measurement signal y in order sin 21f.. sin nrE.

to obtain a feartic nonlinearity for the compensator as a whole.
Motivated by analogies with fluid dynamic turbulence, a quadratic With the above expressions and for a variety of choices of

nonlinearity was desired in order to promote chootu" motion in i, a and 9p, we conducted numerical simulations of the closed-loop

the closed-loop system. This chaotic dynamics endows the sig- systems consisting of (1), (2), (9) and (10) with various initial

nal y with a smooth, broad band power spectrum with no spilse conditions. The qualitative results are not very sensitive to the

or dominant harmonks. The rsulting broad-band character of the choice of 1) or the initial conditions. Some of these results are

'feedback gain', p, i expected to give rise to very efficient power- illustrated in Figs. 1 and 2, which pertain to the case j, = v7 =

fBow from each plant mode to all compensator modes in a manner 0.002, &) = 21,, f. - 0.3 and n = 20 (so that there are 80 states

that is largely insensitive to the precise values of the structural in the closed-loop simulation) and with initial conditions such that

modal frequencies. the first mode has unit displacement and velocity and all other
states are sero -i.e.:

To see if the above intuitive motions were correct, we first ob-
served closed-loop !,erformance via 'brute force' numerical simula- zT(0) = (1, 1, 0.... 0)
tions for a particular model of the structural plant. Specific results

and general obeervations are given in the next Section. Then using The simulations were obtained using a fourth-order Runge-ku~ta
some of the general empirical observations from the simulations, integration routine. Special care has to be exercised in selecting a
a semi-empirical theory was developed in the form of a system of sufficiently small integration time-step, since, as will be seen, (t)

*In using the term *chaotic dynamics' herein, we refer to the exhibits very high frequency content for sufficiently large values of

operational definition given in [21 - namely, a system exhibits chaotic

dynamics when, despite purely deterministic initial conditions and Fig. 1 shows time histories of the displacement response of

periodic inputs, its measured response exhibits smooth, continuous the initially excited first mode and the corresponding time histo-

power spectra. ries of the sensor measurement for three typical values of a. For
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very small ac, the first mode response shows a lightly damped peri- In addition, we have observations concerning the changing
odic motion dominated by the first mode frequency and y(t) shows character of the power spectra of the plant modal velocities, z
similar characteristics. Slightly larger values of a result in weakly k 1., n, as a increases We denote the power spectrum of
damped periodic motions with higher harmonics of the first mode z by Ss,.(w). Noting that the correlation coefficient p,,.(r), is
frequency coning more into play. the inverse Fourier transform of $.,. (w)/ 0' dwS 3.,, the following

On the other hand for x above some critical threshold (which observations also have direct import for correlation functions:
is roughly unity in this example), the response time histories ex- 0.3 For very small a, S,, exhibits isolated spikes at the fre-
hibit a qualitative change. As illustrated by the middle plots in quencies of excited modes having half-power widths equalFig. 1, the initially excited mode, drops dramatically in amplitude to 2171.q
after a relatively brief period and then is damped slowly thereafter.
Neither :i(t) n y(t) exhibits any apparent periodicitim and y(t), 0.4 For larger a, near the critical threshold value a, 5..
in particular, shows evidence of higher frequency content. All of shows spikes at many additional modal frequencies. The
them tendencies are amplified for still larger values of r (see the width of the spikes grows to - a4 (ET given by (16)1.
bottom of Fig. 1). The value of P, appes to be roughly w , where 6w

Further insight into the system dynamics is aforded by Fig. Ttom of Fig. 1).The value of aeapparto bewm roglyn mdl~.w whre an

s2 which (hms under the same conditions as in Fig. 1) the time the minimum separation between plant modal frequn-

histories of the instantaneous modal energies (defined by equations cies.

(5) but without the time averaging) and the corresponding power 0.5 For i >> , the spikes in S.,. coalesce into a smooth,
spectra of 1V(t). For small P (top part of Fig. 2) energy slshes back broad-band spectrum, which is approximately constant
and forth among the first several plant modes and the power Spec- up to some frequency 17,% and then drops off rapidly at
trum of y exhibits sharp isolated spikes. For a above the threshold higher frequencies. The value of Rk is roughly PET i
(middle part of Fig. 2), it is seen that the rapid initial drop off of
the first mode energy is accompanied by a redistribution of energy 4. A Semi-Empirical Theory for the Energy Dynamics of .
into all the other modes, so that after a brief period, all the plant the Nonlinear Compensator
ndcompensator liaisae ogl qal uigth eidHrs we use the simulation results and corresponding obeerva- 4

and cmestrenergies weroughly equal. During the periodwherein modal energies are equalized, the total energy, ,y: tions discussed in the last Section to construct a semi-empirical the-
'- ory for the nonlinear compensator (9), (10). The theory takes the

ET _ : E + t , (18) forma. of approximate equations-of-motion for the time-averaged
i1 k.1 modal energies analogous to (7). These equations are then used

does not appreciably decline. ET is dissipated at a rather small to deduce various qualitative phenomena and provide a few useful

rate consistent with the assumed plant and compensator damping design guidelines.
ratios (17 - j - 0.002). Thus, the rapid decline in the initially ex- Space limitations preclude the full derivations, which will be
cited mode observed in Fig. 1 is due not to direct energy dissipation given elsewhere. Here we attempt merely to sketch the develop.
but to the flow of the fist mode energy into all other modes. Ac- ment.
companying the modal energy equalization phenomenon, the peaks
in the power spectrum of y have broadened and coalesced to form a Tefrtsoisofrmequations of motion for the *second
continuous spectrum. Since the spectral peak broadening and co- moment matrix', Q A ( T , T), of the full closed-loop sys-
alescence is much larger than what can be attributed to damping
and to the finite time period of the time sequence used to calcu- tem (1), (2), (9) and (10). We then manipulate the equations to

late the spectrum, it is apparent that the system undergoes chaotic elinate the cross-correlation terms in favor of the modal mean-motion for above the critical value quares z, I; k = I... n, in = 1...l_ , apply the time av-eraging operator and employ a perturbation expansion approach

The above tendencies are strengthened for still larger values of to obtain equations approximately valid for small K. Neglecting
a(bottom part of Fig. 2). Modal energy equalisation occurs even terms of order a3 

or smaller, we obtain the following equations
sooner, the energy flow to all modes occurring at nearly the same for the time-averaged plant-mode energies, E4, and compensator
rate; regardless of the relative values of the modal frequencies. The mode energies A:
power spectrum of y is further smoothed and broadened. Indeed,
the spectrumof V is nearly constant over the whole frequency band E - -2)Ak Ek + &k(Sj - E), k = l...n
occupied by the plant and compensator modal frequencies. (18)

The above findings tend to confirm the heuristic insights used n = -2./k + -&e,(Ee - .), k = 1...
in constructing the design (9), (10). In particular the quadratic

onlinearities in the compensator do trip the system into chaotic
motion, resulting in a broad-band spectrum for y(t) and very ef- where:

ncient energy flow among all the plant and compensator modes,
even for modes having widely separated frequencies. =he g2 b2]f dr < (t)y(t - r) > -y k((r)

Surveying all the simulation results, we obtain additional ob- 1 (19)

servations regarding time-averaged correlation, antocorrelation el&t(t) - 2 4 € (Wh - wi)t + coo(wh oe)t
functions and power spectra that prove useful in constructing a
semi-empirical theory of the dynamics of the nonlinear compen- and where wk,ck denote the damped natural frequencies:
sator. With regard to correlations and autocorrelations, we have:

0.1 For t larger that -10 lowest mode periods, the separate 1= k (20)

modal coordinates zih,z2h; k = 1,..., n are approxi- ,
mately uncorrelated (in the sense of time averaging)

0.2 Again for t- io lowest mode periods, the autocorrelation Although developed for small ,a, equations (18) appear to give
coefficient of Y: correct results even for large x. This may be due to the semi-er pirical manner in which explicit expressions for the coefficients<(e)y(e - ) > / < Y2 (t) > (17) ae are derived, as discussed in the following.

is approximately independent of t (i.e.. it is weak-sense It remains to express ake explicitly in terms of the modal ener-
stationary) gies. To do t is we use the empirical observations 0.1 through 0.S
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Sgiven in the previous mection. First, and immsediate consequence of can be drained awy to the compoentr via nonlinear design. For
0.1 and 0.2 it: this purpose, consider the case wherein a set of n,~ structural modes

are directly excited and it is desired to reduce the vibration energy
< r ) > ZL b z(t) > P. (r) (21) of these modes because of their determintou impact on system per.

u, foemance. We estimsate the closed-loop response by taking account

where of the interactions between the compensator modes sand only these
- directly excited mow For simplicity, suppose that all nd nodes

'OJr <zaSUMXU0 -T ) > / < ZL(t) > (22) are initially excited to the same energy:IHowever, neglecting higher-cider terms in a; < c > as Eu(t).
Usingth"eapproximation i(21) and substituting the result into AM,(-)Eo Vk -... nd

.20 and that the compensator is kkiially quiescent; ie., 14.1 0 Yk.
ab 2 r~rb?,s ~ ~ ~ (3 Also let as estimate the magnitude of all the modal influience cc-

eficients by some average value 5, i.e., b'2 = 6 Vk. Finally, sinsce
I" flexible structure vibration control is our motivating application,

r~h Z drp.(r)j-var) (23.b) We assume small damping ratios for both plant and compensator;iI. ~,< .,j <10
Next we deduce the form of F,,.a by considering two limitrgI With the above conditions, supp-4e that [0, An) is the fr-

case: very small x and very larp is. In the case of very small it, quency band encompassed by all the initially excited modes. We
0.3 implies. need only choose the n. compensator frequencies, 4ku; k = I1... nt.,

P.,jr) =it~' n. OB .r somewhesre in this band, because, as (24.b) shows, the choice of sc

This can be substituted into (231b) and r,,, evaluated directly. suhta TJ>I n(5
For large x, we use 0.4 and 0.5 together with dimensional ansalysis E 30(5
to deduce the asymptotic form of r.., As the last step,,an epres- ,ures, that all the r,,~'s reduce to the same value, inj. de-
son for r., is devised which correctly reduces to the expressions pednl fte opnao rqunis h esg hie(5
derivedfothtw intnca .TefnlrslispednloftecmestrfeunisThdeincoe(5

for he wo lmitng ases Th fial rsul inimplies, by use of (24.a), that:

&Il 2b~ bl EmFM, (24.a) 62~~E,.(6

Fmu, !(A- + notfl, + itt~) Er

(__________________I_ Using this result and the fact that during the initial period of en-

(,.+ n~ufl, + 44,~)2 + + W 5Z)
2  ergy equalizations, F_ Z,, can be estimated by ET, equations (16)

(A. + niu,()u + 4 )2+ (,.-w +0be4me
t,-2,nfuEk,+#ct4PF(t.- Eh,); k = 1... n

(A_, + ,17fl, + 4e I7)) + (wn+ Wk, + Q)2 e1(7
1 (24.6) .t -d~l,1 (e-t; k=1 1... , 27

of th nln (~,+iu t ha (24.e o: mdlergsNtehO = Eo. 't(0) = 0Vk , )()
whr kthand ceatr afnd m(2)aynow b1) eusetvly deductteebveeutinipy

various properties. F 0 dE
First, it should be noted ta(1)reof tesame structure

as (7). The power flow from any one mode to all other modes Evidently, the total energy is dissipated over a time scale of or-
is again proportional to the energy differencesi and because the der orL " (frsm_)Lyvru f u ml apn ai

coupling coeffcients &#,e are all intrinsically positive, power always assumption and design choice (25), this time scale is much longer
Rowe fronm the more energetic to the less energetic mode. These than the time scale over which the initial energy redistribution
features ensure that the system will be driven toward equalization takes place. For investigation of the initial period of energy equal-
of modal energies with the time scale for equalization being dictated isastion, therefore, we may treat ET as a constant =n.AE-o and
by the magnitude of P4.. This is consistent with the qualative neglect the damping terms involving 'l7k and 'lu in (27). With these
observations of the last section. Furthermore, (24) shows that for approximations, one immediately obtains the following solutions

1 for the relatively brief initial time period over which energy redis-
sufficiently large as; Fruq approaches the uniform limit -I, so tribution occurs:

that: < 2> Eu,=E0 -k 'E SO 1 1 T k = I .n,

E~~ ~~~ +___ (1nc T1 (29)

Thus, in contrast to (8), there is strong power flow from any one d-n
plant mode to all other compensator modes, regardless of the rel-
ative values of the plant compensator frequencies. This efficient where:

eegy sharing is a cnnssequence of the noulinearity introduced in Tk., (30)
the compensator design (9) and (10). ErmiIj-n

As a last topic, we use (16) and (24) to obtain simple quantita- *This simplification actually result3 in an overestiniatin ofth
tive estimates of the speed with which str~uctural vibration energy energies resident in the n1 excited modes.
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I ET is L apuo fucio n for thestem s (1), (2) (3), (), ice.

Thus, after a time period a order T., the enerin initmally reaid-
inm in the plant structural vibration is drained away to the ompen- .
sa modes and all modal energies are approximately equalized dl h-1x Awl

caseo tepatiuarfrmo qadacnnlneutis 
cm

t a T.: E 2( kaflt+ = ET Yk (31) Thus the controller (33), (35) is inherently stable.to: , nSummary and Conclusion

Now for t >> Ti. we can hearacterise the evolution of the In th" e Papert we explored a nvel type of nonlinear dynamic
with, n , by uilng (1) in (2) to ob : oar desg that was aiginay m vt by certain w hea g

of boh theplantand cmpenator dmpin rathe numbe of uch dz mo upes in int axalel inraes ihte.

Afruse of the poar form of quadratic noalneatr , the ca

I t e t m p d (Io n the l c ion w th th a n t of appge inte na -
er at he to w hich the modal enegieaaepble of rapidl dnawin ners swa f m th tructur plan.

Thus, aeo lare time scal y, the total enery is damped expoe- Icn addempne oua r vey s el n ectivem ens t viati teupreion.

tially with an equivalent d emp lti ve vibratio n suprae tion of seampler moduees and its afrctive sin i withtly

ofca behivdb the pl n nlea compen a pnatos. the number of such excited and mustb up essed and iv we eaemploy th ee

an b e ad v e nsar This, ruggt thequestion:Doesnumber of inch modules. Thene features motivate the imp Tmente-
Another noteworthy feature of the aove results is that bth tion of the nonlinear controller via the neural network architecturethe time period, T. (equ ation (30)), needed for equal iation of en- xplored in the last Section. W ith the advent of appreciate an &.

ertes and the value to which the modal enerties am equalied 109 neural noet hardware, this suieled nonlinea ompenfaion
(equations (31)) an univerely proportional to the number of com- scheme could ofer a very elective means of vibration suppresion.pnsor modes. Thus, especially fective vibration uppresion or example suppose sm 10 structural modes are sinificantlyi

can be achieved by the nonlinear comp eno if the number of its 
exci ed and must e spp~e sed and we employ the neural n ot

sats can be made very lare. This, sugest the question: Doen controller invovn a modest number of neurons, ay 2000. Then

the compensator (9), (10) have a simple repetitive structure can nt - 10, n o 10 and it is men from (31) that the vibrational i

this ruct re be implemented s aneural n ot cotainin l rge energy of each excited mode is quickly reduced to naf t

5. A NauraloNt e on oftheNoninitial value - a reduction of more than a hundredfold.3 5. A Neural Net Rallatinn of the Nonlinear

Compensator References

Equations (9) and (10) may be rewritten to reveal that the 1. E. E. Ungar, 'Statistical Energy Analysis of Vibrating Sys-

control signal u is the sum of no components: tems, Trans. ASME, J. Eng. ld., pp. 626-832, Nov. 1967.

2. F. C. Moon, Ckaotic Vibrations, Wiley-Interscience, New York,
U Z u 

(33)
(33) 3. J. J. Hopfield, 'Neurons with Graded Response have Collec.

tive Properties like Those of Two-State Neurons, Proc. NotI3 where each u, is the output of a simple nonlinear ocilla r Aced. Sci. USA, Vol. 81, pp. 3088-3092, May 1984.

sh =

d r[O* h /a 2(' (34)
*mm -24kh J\ ) +e 01 , 0.25

Thus, the nonlinear compensator is a combination of simple repet-
itive modules and this suggests that it can be efficiently imple-
mented as a neural network.

To see that this is the case, define g(') to be some antisym- -A

metric sigmoidal function such that g(z) is maximum at z = 0,

where g'(0) = 1. Then consider the replacement of (34) by: li,
U in, = -vg(o.)

--

I ,a ,. -

(35) -
The above equations easentially reduce to (34) for small signal - -

amplitudes such that g(z) = z.

It is now easy to see that (33), (35) are equivalent to a system .N 
do

formed by interconnection of analog neurons, of the form given-.
n by Hopfield, illustrated here in Fig. 3. Using such neurons, we ,

form neuron pairs in the manner shown in Fig. 4.a, such that -

each neuron pair implements one compensator mode. We finally
interconnect no neuron paius as shown in Fig. 4.b to obtain a
system completely equivalent to (33), (35). Fig. 1: Time histories of the initially excited modal displacement

It is seen that this as an implementation involving very sparse and the sensor measurement fort) = 1%. = 0.002 and

neuronal interconnections. Note also, that just as _ Zh(Z + various values of .

z a) + Ep(k + £j2) is a Lyapunov function for the closed loopI system (1), (2), (9), (10); so too, the quantity

+ 257 :t(f (x)dx 9(X)dX) (38)
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Fig. 2: Time histories (for the same conditions an Fig. 1) of the
instantaneous model energies (E. - 4(x'. + z1,), t. -3 ~((*+&L)) and the corresponding power spectra of the
sensor measurement.

m W.. v• vVle a~e ta~3 . .U del

Fig. 3: Basic structure of an analog neuron following Hopfid

m (3).

t1, (a)

,._,

m Fig. 4: Implementation of controller (33), (35) via a neural net-
work:
() 3 undment al neuron pair, (b) oVerlol architecture.
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Real Parameter Uncertainty and Phase Information In the Robust Control of Flexible Structures

by
D. S. Bernstein, E. G. Collins, Jr., and D. C. Hyland

Harris Corporation, MS 22/4842, Melbourne, FL 32902

Abstract
Real parameter uncertainty and phase information play a in feedback configuration, a controller for this plant that is strictly positive

the malyezs and synthesis of robust controllers for lightly damped flexible real cannot destabilize the system since the loop transfer function has phase
structures. In this paper we discos the ramifications of this issue it of Iss than -I0 over all frequencies. Hence such a control system will be un-
fts achievble performance in structural control. In this regard we review conditionally robust to uncertainties in both natural frequencies and damp-
the state of knowledge in addreesing real parameter and phase issues. The sag. Of course, these observations assume perfect sensors and actuators so
discusmion i illustrated by examining robust controllers designed for the s not to introduce additional phase lag. If the sensors and actuators do
ACES structure at Marshall Space Flight Center. These controllers __ have significant dynamics, then the feedback law must be chosen so that
designed by meas of the Maximum Entropy generalized LQG methodol- the transfer function consisting of the cascaded sensor, compensator, and
01Y. actuator dynamics is strictly positive real. If, in practice, positive realness

can only be enforced over a limited frequency band, then loop gain rolloff is1. Introduction required when phase lag* or phase uncertainties reach unacceptable levels.

craditionally, spacecraft control-system designers have been pr gtar- By exploiting the stability guarantee due to the interconnection of poe.ily concerned with controlling rigid body attitude modes, while avoiding itive real MIMO systenm, robut positive real controllr have been studiedthe excitatio of flexible body dynamic . As performance requirements for structural control 123-31]. A related approach involves using H. de-become more stringent and spaceraft become larger, contro s sta de- sign in conjunction with the bilinear transformation 132. By using a Riccatisign mut explicitly encompas tolxible dynamic modes so as to actively equation to enforce a positive real constraint, robust controllers for positivesuppress undesired structura vibration. Furthermore, for complex space- real uncertainty were obtained in [331. Related results appear in 1341.
cerftqulinpt mAlternative approaches to including phase information in analysis and

be reqired. synthesis include 31f,381. Ref. 1391 extends the gin envelope approach of
Since structural modeling and identification of large flexible structures 140411 to include a phase save ope a well Them envelope are charac

in a l-g environment possess inherent limitations, one of the key issues int i nclud a pa se e e ca these envelop s i a re atned by real parameters whose effect can then be addressed using realstructural control is robustness. Although robust control has undergone parameter robustness techniques.intensive development in the past two decades, there remain aspects of roA
bust control that are relevant to structural control and that an largely An alternative approach to exploiting phe information is based on
nescold. That asect arel he t o f r al conatero nd tant y the concept of structured covariance matrix. Roughly speaking, robustness

phase information. The purpose of this paper is to examine the impact of is not guaranteed by means of a Lyapunov function or covariance bound (81,
these issues on structural control, their interrelationship, and their mani- but rather by means of a covariance matrix whose structure is insensitive
festation within the analysis and synthesis of feedback systems. to a given class of plant perturbations. This concept provides the basis
e oP h i Sta aloi d Gynt i of ffor the generalized LQC synthesis technique known as Maximum Entropy2. Phase Stabilisation Verus Gain Stabilization design [42-48].

From a classical control-design point of view, the issues of real param-
eter uncertainty and phase information are manifested in the fundamental 5. An Illustrative Example Using Maximum Entropy Synthesis
concepts of gain and phase stabilization. In terms of gain stabilization, The ACES experimental testbed is located at NASA Marshall Space
stability of a single-input single-output closed-loop system is insured by Flight Center. The basic test article, a spare Voyager Astromast, is a
designing the controller so that the magnitude of the loop transfer func- deployable, lightweight (about 5 pounds), lightly damped beam, approxi-
tion is less than unity in frequency regimes in which the phase is either mately 45 feet in length. The Astromast is symmetric with a triangular
known to be near 1800 or is highly uncertain. In terms of phae stabiliza- cross section. Three longerons form the converse of the beam and extend
tion, stability is achieved by insuring that the phase of the loop transfer continuously along its full length. The cross members, which give the beam
function is well behaved where the loop transfer function has gain greater its shape, divide the beam into 91 sections each having equal length and
than unity. Roughly speaking, phase stabilization can be used to allow mass and similar elastic properties. When fully deployed, the Astromast
high loop gain and thus achieve high performance in frequency regimes in exhibits a longitudinal twist of approximately 260 degrees.
which sufficient phuse information is available, whereas gain stabilization
(e.g., rolloff) is needed to insure stability where the phase of a system is The ACES configuration consists of an antenna and counterweight legs
very poorly known. For further discussion of the distinction between phase appended to the Astroiast tip and the pointing gimbal arms at the As-
and gain stabilization, see [l]. tromast base. The addition of structural appendages creates the 'nested'

modal frequencies characteristic of large space structures. Overall, the
3. Structured Real Parameter Uncertainty Versus Unstructured structure is very flexible and lightly damped. It contains many closely
Complex Parameter Uncertainty spaced, low frequency modes (more than 40 modes under 10 Ie). The

A variety of approaches have been proposed for addressing uncertainty ACES configuration is dynamically traceable to future space systems and
in the synthesis of robust controllers. These include H.o synthesis [2- is particularly responsive to the study of line-o-sight (LOS) issues.
51, quadratic Lyapunov functions [6-9], and the structured singular value The goal of the control design is to position the laser beam in the cen-
110,111. All of these methods effectively treat the uncertain parameters as ter of the detector. The disturbances were chosen to be position commands
complex quantities, and are thus conservative with respect to real param- to the Base Excitation Table (BET). The BET motion is regulated by an
eter uncertainty. If the uncertain parameters are known to be real, then analog controller which allows any type of BET movement within the fre-
special techniques are required to avoid conservatism [12-10]. quency limitations of the hydraulic actuation system. In the discussion that

To illustrate the conservatism of H. theory in the presence of phase follows we will consider only one single-input, single-output loop involving
information, it need only be noted that 1011; - 1 regardlees of the phase AGS-X, the x-torque of the Advanced Gimbal System, and BGYRO-X, the
angle 0. Indeed, any robustness theory based upon norm bounds will suf- rotational rate of the base gyro.
fer from the same shortcoming. Of course, every real parameter can be For the AGS-X to BGYRO-X loop a model was developed by using the
viewed as a complex parameter with phase 0 - 00 or 0 = 1600. Since the Eigensystem Realization Algorithm. The ERA model was compared with
existence of a sangle Lyapunov function for a norm-bounded uncertainty the frequency response functions (FRF's) derived from the test data. The
clas is equivalent to a small-gain condition [91, much of Lyapunov theory ERA model matched the FRF data fairly closely in magnitude although
exhibits a similar conservatism, the modal frequencies do not exactly coincide. The ERA model differed

In structural modeling via finite element models, uncertainty in the even more from the FRF's in phase.
man, damping, and stiffness matrices is unavoidable. If the mam and stiff- Control design for LOS performance, initially performed by using Stan-

eas matrix uncertainty is modeled as complex, unstructured perturbations, dard LQG techniques, required penalizing only the modes less than $ Ha.
then the damping matrix is effectively perturbed as well. Indeed, damping Thus, high performance controllers were liniited to having gain only at the
is sometimes modeled as a complex stiffness '20, p. 194). Difficulty irises modes less than 3 Hs. To avoid destabilizing the two higher frequency
when stiffness uncertainty is large relative to damping uncertainty, in which modes of the ERA model, the LQG controllers contained notches at the
can complex stiffness uncertainty corresponds to a physically unrealisable two corresponding frequencies.
unstable plant model. The LQG controllers tended to be very sensitive to the phase uncer-
4. Phase Information and Positive Real Transfer Functions tainty in the performance region, the frequency interval from DC to 3 Hz.

Phase information plays a fundamnental 10le in structural control. For They also were very sensitive to the frequency uncertainty in the two higher
illustration, consider a flexible structure with a colocated rate sensor/force frequency modes. Thits control problem thus provides an excellent real-life
actuator pair and assume these devices are ideal. For such a system the example of phase uncertainty and re.il parameter (in this case frequency)
transfer function from the actuator to seli.or * known to be positive real, uncertainty.
that is, to have phase lying between 90" and .90" 21,2 21. In a negative Robust control design was performed using the Maximum Entropy

(ME) approach r49]. This approach allows the designer to directly account
for real parameter uncertainty 142-481. Figure 1 describes the influence of

Supported in part by the Air Force Office of Scientific Research under ME uncertainty design on the phase ot a full-order compensator in the per-
contract F4020-89-C-0011 and F4962089C.,3029. formance region. The phase of the LQG compensator varies widely (and

wildly) over this frequency interval, iniply ng that the Nyquist plot of the
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In many applications of feedback control, phase information is available concerning the plant
uncertainty. For example, lightly damped flexible structures with colocated rate sensors and force
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11. Introduction

In many applications of feedback control, phase information is available concerning the plant
uncertainty. For example, lightly damped flexible structures with colocated rate sensors and forceI actuators give rise to positive real transfer functions. Closed-loop stability is thus guaranteed by

means of negative feedback with strictly positive real compensators. This principle has been widely

I used to design robust controllers for flexible structures [1-10].

The salient features of positive real transfer functions is that they are dissipative and phase

bounded [11-25]. Hence the feedback interconnection of positive real transfer functions is guaran-

teed to be stable without requiring that a small gain condition be satisfied. Positive real design is

thus potentially less conservative than bounded real (H.) design in the presence of phase informa-
tion.

In this paper we utilize properties of positive real transfer functions to develop new conditions

for robust stability and robust stabilizability. Although related results have been developed previ-

ously [26-30], this paper goes beyond earlier work by exploiting a Riccati equation formulation in

the spirit of recent advances in H.. synthesis [31-37j. This is done in two different, but equivalent,

ways. First we show that the Riccati equation used to enforce an H. constraint can be transformed

to yield a different Riccati equation that enforces a positive real constraint (Theorem 3.2). Alter-I natively, we show that the same Riccati equation can be obtained by manipulating the conditions

of the positive real lemma (Proposition 3.3). Many of the techniques and transformations used in

I these steps are due to [17], which contains an extensive treatment of positive real and bounded real

transfer functions.

Once the Riccati equation that enforces positive realness has been derived, robust stability can

be guarant~ed for a class of perturbations involving an arbitrary constant positive real matrix (see

the set U defined by (4.6) and Theorem 4.1). The modeling of matrix uncertainty by means of a

"fictitious" feedback loop (linear fractional transformation) is directly analogous to the small gain

(H.) parameter uncertainty model of [37]. In our case, however, the class of uncertainties includes

a phase constraint rather than a small gain condition (see Remark 4.1).

Having enforced robust stability for positive real uncertainty, we then proceed in Section 5

to give necessary and sufficient conditions for robust stabilizability in terms of a pair of coupled

algebraic Riccati equations (Theorem 5.1). A robustly stabilizing feedback gain is then given in

I



terms of the solutions to the Riccati equations. The stabilizability result is first stated for static

output feedback and then specialized to the case of full-state feedback.

Finally, we close the paper by discussing connections between the positive real uncertainty

modeling approach of this paper and the Maximum Entropy approach to robust control design of

[10,38-43].

Notation:

IR,IR r X* real numbers, r x s real matrices

I,, I; ( )T, () r x r identity matrix; transpose, complex conjugate transpose

tr, p( ), Om,() trace, spectral radius, largest singular value

IIH(s)ll. sup cr&[H(jw)]
weIR

n, m, no, t positive integers

A,B,C,K n x n, n x m, fx n, mx I matrices

Bo,Co, Do, F n x io, m0 x n, ma x io, m0 x mno matrices

2. Preliminaries

In this section we establish key definitions and notational conventions that simplify the expo-

sition in later sections. We begin with the definitions of positive real and bounded real transfer

functions [11,17].

In this paper a real-rational matrix function is a matrix whose elements are rational functions

with real coefficients. Furthermore, a transfer function-is a real-rational matrix function each of

whose elements is proper, i.e., finite at a = oo. Finally, a stable transfer function is a transfer

function each of whose poles is in the open left half plane. Note that the space of stable transfer

I functions is denoted in [44] by RHa,, i.e., the real-rational subset of Hoo.

A square transfer function G(s) is called positive real [17, p. 216] if 1) all elements of G(s) are

I analytic for Re[s] > 0 and 2) G(s) + GC(s) is nonnegative-definite for Re[s] > 0. A square transfer

function G(s) is called strictly positive real [2,14] if 1) all elements of G(s) are analytic for Re[s] :> 0

H and 2) G(jw) + G*(jw) is positive definite for real w. Finally, a square transfer function C(s) is

strongly positive real if it is strictly positive real and D + DT > 0, where D 4 G(oo). Note that

strongly positive real implies strictly positive real, which further implies positive real. Furthermore,

we note that if a transfer function is strictly positive real, then the system is stable and dissipative.

I 2



Next, we give the definition of bounded real. A transfer function H(s) is bounded real [171 if and

only if 1) all elements of H(s) are analytic for Re[s] > 0 and 2) I - H(jw)H'(jw) is nonnegative

definite for real w. Equivalently, 2) can be replaced by [17, p. 307] 2') I- H(8)H (s) is nonnegative

definite for Re[s] > 0. Alternatively, a transfer function H(s) is bounded real if and only if H(s) is

stable and satisfies IIH(s)JI. < 1.

Next we establish some notation involving state space realizations of transfer functions. Let
1441

SG(8) - A IB] (2.1)

denote a state space realization of G(s), that is, G(s) = C(sI - A)- 1 B + D. If G(s) is square and

det D : 0, then
G-1(s) -[ BD-C ]. (2.2)

Finally, if G1(s) = C1 ( , - A 1)- B, + D, and G2(8) = C2 (sI - A 2)-B 2 + D2 , then

FA2  0 B2 1
G1 (s)G2 (s) B1 C2  A1  BiD 2  . (2.3)

DIC2  C, D1 D 2 J

3. Riccati Equation Characterizations of Positive Real
and Bounded Real Transfer Functions

In this section we provide explicit connections between positive real and bounded real transfer

functions and their associated state-space realizations. Furthermore, we give Riccati equation

characterizations of their resulting state-space realizations. Finally, we draw connections with the

well-known positive real lemma [11,17,23].

We begin with a result [17] that relates bounded real transfer functions to positive real transfer

functions via the Cayley (bilinear) transform. Throughout the paper y denotes a positive number.

Lemma 3.1. If -yH(s) is an mxm bounded real transfer function with det[Im- 7 'H(s) 0 0

U for Re[s] > 0, then

G(s) A [I. - -y-H(8)]1-[I. + -- H(8)] (3.1)

is positive real. Conversely, if GC(s) is an m x m positive real transfer function such that G(s) is

I analytic for Reis] > 0, then

3



I is bounded real.

Proof. Suppose '1f1 H(s) is bounded real. Since det[Im - $y'~s]3 0 for Re[sJ > -0, it

follows that GC(s) is analytic for Re [a] > 0. Then with G (s) defined by (3. 1) it follows that f1 H (a)Isatisfies (3.2). Thus, we obtain for Re[s] > 0

I -r 2IH(s)H*(s) = [G(9) - ImJ[G(s) + ImI[G*(s) + mf[ s)-i] im, (3.3)

which implies

I ~ ~[G(a) +Im Ca+ I.]-' <_ G()1m 1 [)1 (3.4)

o , e u v l n l ,[C *(a) + Im llG ( ) + 1,] ! [G '( ) - Im ][G ( ) - 1 .n ] (3.5)

Iwhich further implies that G(s)+C*(s) ! 0 for Re[s] > 0. Conversely, suppose C(s) is positive real.

Then, since C(s) is assumed to be analytic for Re[a] : 0, it is easy to show that det[G(s) + I.1 #5 0Ifor Re[s] :t 0. Therefore, 1-'H(s) defined by (3.2) is analytic for Re[a] ,: 0. Then with 'C'IH(s)

defined by (3.2) it follows that G(s) satisfies (3.1). Next, for Re[s] > 0 we obtain

I (s) +C(a) = [>m~ 1 ~) 1 [~+rH.]+[' - 1 ~)[.-- 1 ~)- 0. (3.6)

IForming [1,. - -y-1 H(s)](3.6)[I. - r1 'H(s)] yields

I[I.m + -y 1 H(s)] [I. - -y-H* (a)] + [I.m - -f1 H (a)) + [I.m + -y-1 H*(s)] 2! 0,

Iwhich implies I,,m - -y 2H(s)H*(s) 2! 0 for Re[s] > 0. 0

Next, we use the results of Lemma 3.1 to establish connections between the state space real-Iizations of positive real and bounded real transfer functions.

Proposition 3.1. If G(s) is a positive real transfer function with minimal realization

then the bounded real transfer function -yr1 H(s) defined by (3.2) has a minimal realization

I 7 1 Hs).'-(3.8)
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where

A 4 A - B(Im + D) -C, (3.9)

B 2- V/B(Im, + D) - 1, (3.10)

C = V2(I.m + D) -C, (3.11)

b4 (D - I.)(D + I.)-'. (3.12)

Conversely, if "y-' H(s) is an mxm bounded real transfer function such that det[I, -'H(s)] : 0

for Re[s] > 0 and with minimal realization

[C iD J

then the positive real transfer function G(s) defined (3.1) has a minimal realization

G(S , (3.13)

where

A A A + B(I. - D)-C, (3.14)

A- 4viB(Im - D) - ', (3.15)

C A V2-(I, - D)- C, (3.16)

f) A (I. - D)-*(1. + D). (3.17)

Proof. Given (3.7) it follows that the realizations of G(s) - I. and G(s) + I,,. are given by

[G(s) - I,.]~ -A,, B [G(s) + I'-l ~ A ---b-+ B

Now, since G(8) is positive real, it follows that D + DT > 0 which further implies that I, + D is

invertible. Next, using (2.2) we have

A- B(I.+ D)-lc B(Iin+D)- 1[G(s) + I,.]- '
I t + D)-iC (D + I,,) -

Using (2.3), it now follows that -y-tH(s) = [G(s) - Im][G(8) + ,] - 1' has a nonminimal realization

A - B(I, + D)-lC 0 B(Im + D)- 1

Vy_1H(s) -B(I + D)-C A B(Im + D) - 1

(Im - D)(Im + D)-'c C (D - Im)(D-1n) -

5



Next it follows from state-space manipulations that y-H(s) has a minimal state-space realization

given by
A - B(Im, + D)-'C x/-B (rIm + D)-

,7-1H(s),.

I V2(I. + D)-'C (D - I.)(D + I)- 1J
Furthermore, Lemma 3.1 implies that -* 1 H(s) is bounded real. Finally, the converse is shown in

a similar fashion. 0

Having established connections between state-space realizations of positive real and bounded

real transfer functions we proceed in the spirit of recent H, results [32-37] to establish Riccati

equation characterizations of positive real systems.

Theorem 3.1. Let H(8) A DI, where om.(D) < -/. If there exists an nxn nonnegative-

definite matrix Q satisfying

0 = AQ + QAT + Y-2(BDT + QCT)(Im - 1-2DDT) -(BDT + QCT)T + BBT, (3.1.8)

then (A, B) is stabilizable if and only if

A is asymptotically stable. (3.19)

Furthermore, in this case,

11H(s)JlI <y. (3.20)

Conversely, if A is asymptotically stable and IIH(s)lloo < -, then there exists a unique nonnegative-

definite matrix Q satisfying (3.18) and such that the eigenvalues of A+- 2BDT (I,,J' 2 DDT)-C

+ - 2 QCT(Im - "y- 2 DDT)-1C lie in the open left half plane. Furthermore, Q is the minimal

solution to (3.18).

Proof. The asymptotic stability of A follows directly from Lyapunov theory while (3.20)

follows from algebraic manipulation of (3.18); for details see [36]. The converse follows from the

bounded real lemma [17, p. 308] or from spectral factor theory [31]. Finally, the proof of minimality

is given in [45]. 0

Next, we utilize a transformation that converts a nonstrictly proper transfer function into a

strictly proper transfer function both of which satisfy the same HO bound. For convenience in

stating this result define the notation

M - I, - "- 2 DDT, N Im - - 2 DTD.
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I Note that M is positive definite if and only if N is positive definite.

Proposition 3.2. Let H(s) [_ [C -D ,and assume M and V are positive definite. Then A

* is asymptotically stable and

II(s)Il. < -y (3.21)

if and only if A' is asymptotically stable and

I IIH'(s)lI. <y, (3.22)

3_- where H'(s)-. .'] and

A' A A+ _-2BDTM-IC, (3.23)

S=B A BN - /2 , (3.24)

C' A M-/ 2C. (3.25)

E Furthermore, (3.18) is equivalent to

0 = A'Q + QAT + s-mqcITC'q + BIBIr . (3.26)I
Proof. The results follow from Theorem 3.1 and algebraic manipulation. For details see [36].I []
Next, using Theorem 3.1 we give a Riccati equation characterization of positive real trans-

I fer functions. To do this we use (3.18) to imply that the transfer function corresponding to

(A, -B, C,-yD) has Hoo norm less than -y. By Lemma 3.1 and Proposition 3.1 the resulting Riccati

equation, i.e., (3.18) with (A,B,C,D) replaced by (A-i,-,6, jb), implies that G(s) [, A B

is positive real. To utilize Theorem 3.1 we require that ,,(- 1b) < -y or, equivalently,

I _ D DT > . (3.27)

I Now, using ('.12), this is equivalent to

3I,, - (D - Im)(D + 1.)-I(D + Im)-T(D - 1,)T > 0. (3.28)

I Since (D + I,) and (D - I,) commute, (3.28) implies

(I,, - D)(Im - DT ) < (I, - D)(I - DT) (3. 29)

I7



I which implies that

D+DT > 0. (3.30)

I Thus, we restrict our attention to strongly positive real systems.

* Theorem 3.2. Let G(s) - - [ B] ,assume det[D + IJ . 0, define A, b, 6, b by (3.9)-

(3.12), and assume amax(b) < 1. If there exists an n x n nonnegative-definite matrix Q satisfying

I 0= AQ + !LAT + (ED T + nQT)(/- _ bb T )- 1 (bb T + Q6 T ) T + .. T, (3.31)

I (A, f) is stabilizable, and

I det[i,, - 6(si, - A)-1b - b] 7 0 for Re[s] > 0, (3.32)

then

G(s) is strongly positive real. (3.33)

Conversely, if A is asymptotically stable and G(a) is positive real, then there exists a unique

nonnegative-definite matrix Q satisfying (3.31).

Proof. The result is a direct consequence of Theorem 3.1, Proposition 3.1 and Lemma 3.1. 0

Remark 3.1. Using Proposition 3.2 we can represent (3.31) in the equivalent form

So = .±'Q + Qi' + Q61T6IQ + bbT, (3.34)

m where

A, _ A - B(Im. + D)-lc + QB(I. + D)-DT(, - bbT)-l(I, + D)-C, (3.35)

I A' A v2B(I,,, + D)-,(I, - bTb)-1/2, (3.36)

(5, A V2(I, _.bT)-1/ 2 (I' + D)-C. (3.37)

Remark 3.2. An interesting special case of Theorem 3.2 is the case D = I,. Since D = 0

(see (3.12)), (3.31) or, equivalently, (3.34) becomes

122 (3.39)

Finally, we draw connections between Theorem 3.2 and the well-known positive real lemma

used to characterize positive realness in the state-space setting '17'.

I8



Lemma 3.2. Let G(s) - IC -D- be an m x rn transfer function with minimal realization

(A, B,C, D). Then G(s) is positive real if and only if there exist matrices Q E IRxn, L E IR

and W E IR ' xP with Q positive-definite and such that

S0 =AQ+QAT +LLT, (3.40)

o = QCT - B + LWT, (3.41)

0= D+ DT _ WWT. (3.42)

I This form of the positive-real lemma is the dual of that given in [11,23], and the derivation is

similarly dual. See [12] for further details on the dual positive real lemma.

I The key question of interest here is the relationship between Q satisfying (3.40)-(3.42) and

Q given by (3.31). To answer this question, we invoke the assumption that D + DT > 0 which,

I as noted earlier, is needed for the existence of Q. Thus, once again, we restrict our attention to

strongly positive real transfer functions. In this case, it follows from (3.42) that

WWT = D + DT. (3.43)

I Now, since D + DT > 0, W is nonsingular and thus (3.41) implies

L = (B - QCT)w - T. (3.44)

I Using (3.44) it follows from (3.40) that

0 = AQ + QAT + (B - QCT)W-TW-I(BT - CQ) (3.45)

or, since (WWT) - i = W-TW - I ,

1 0 = AQ + QAT + (B - QCT)(D + DT)-I(B - QC)T. (3.46)

Thus, we have shown that under the assumption that D + DT > 0, conditions (3.40)-(3.42) are

equivalent to one Riccati equation given by (3.46). A similar result for the dual case appears in

The next lemma connects the two Riccati equations (3.31) and (3.46).

Proposition 3.3. Assume D + DT > 0. Then the Riccati equation (3.46) is identical to the

Riccati equation (3.31), or, equivalently, (3.34).

I



Proof. Using (3.46) it follows that

0 = [A - B(D + DT)-lC]Q + Q[A - B(D + DT)-C]T

+ QCT(D + DT)-ICQ + B(D + DT)-BT. (3.47)

The result now follows from algebraic manipulation by noting that

(D+ DT) - 1 = 2(I, + D)-T[I. - (D - I.)(D + I,)-1(D + I.)-T(D - + D)-,.

Remark 3.3. Note that in the case D = I,,, Proposition 3.3 can readily be seen by comparing(3.39) and (3.46).

14. Robust Stability Problem with Positive Real Uncertainty

In this section we state the robust stability problem with positive real uncertainty. Consider
the uncertain system

t(t) = [A-BoF(I. + DoF)-Coz(t),

F F+FT >0

when the inverse of I + DO F exists. It is useful to note that (E) can be viewed as a stronglyI positive real system (A, Bo, Co, Do) in a negative feedback configuration with the gain F (see Figure

4.1). That is,

Ii(t) = Ax(t) + Bou(t), (4.1)

y(t) = Coz(t) + Dou(t), (4.2)

with negative feedback

u(t) = -Fy(t), (4.3)

I where

F+F T > 0. (4.4)

Thus, the question of interest is the stability of the uncertain system (E) with positive real uncer-

tainty (4.4). However, before we proceed with this question we give a lemma on the existence of

I (I,, + DoF)-I when the system (A, Bo,Co, Do) is strongly positive real.

Lenuna 4.1. Let Do, F E IRO X 0 and assume that Do + Do is positive definite and F + FT

is nonnegative definite. Then

det[I, + DoF] 0 0. (4.5)

10



Proof. Since Do + DT is positive definite, it follows from Lyapunov stability theory that -Do

is asymptotically stable. Hence Do is nonsingular. Furthermore, it follows that D -1 + D-T =

D-1 (Do + DT)D-T is positive definite. Since F + FT is nonnegative definite, it follows that

oD' + F + (Do1 + F)T is also positive definite. Hence -(Do 1 + F) is asymptotically stable and,

consequently, D- 1 + F is nonsingular. Thus

det[Im + DoF] = (det Do) det(Do* + F) 6 0. 0

Next, we present the main result of this section which shows that the uncertain system (z)

is robustly stable for all positive real uncertainty of the form (4.4). For the statement of the next

result we define the uncertainty set

U S {AA E R"x": AA = -BoF(I. + DoF)-*Co, F + FT > 0}, (4.6)

where Bo E IR m °0
, Co E IR' x "', and Do E IR ° X 0 are fixed matrices denoting the structure

of the uncertainty and F E IR'n ° X"'o is an uncertain matrix (see Figure 4.2).

Theorem 4.1. Let G(s) -[A_.,_ BoI, where A E IRn" x is asymptotically stable. If G(s)Theorm 4.. Le G~s " [Co I-Do J(8
I] is strongly positive real, then A + AA is asymptotically stable for all AA E U. Conversely, if

Do + DT > 0 and A + AA is asymptotically stable for all AA E U, then G(8) is strongly positive

I real.

Proof. As shown in [2,14,18,21] a negative feedback configuration consisting of a positive real

I transfer function and a strictly positive real transfer function is stable. Under the assumption that

G(s) is strongly positive real, the dynamics matrix of the closed-loop system, which has the form

I A - BoF(I,, + DoF)-ICo, is asymptotically stable. Hence A + AA is asymptotically stable for all

AdA E U. Conversely, if Do + DoT > 0 and A + AA is asymptotically stable-for all AA E U, then it

I follows from the definition of hyperstability [21] that G(a) is strongly positive real. 0

Remark 4.1. The key feature of the uncertainty set U is that the uncertain perturbation 'AA

I involves a phase constraint. To see this note that if Do + D0" > 0 and F + FT > 0 then

3 F(I,+ DoF)-1 + [F(I + DoF)-1 ]T = (I+ DoF)-T[F+ FT + FT(Do + DT)F](I+ DoF)- 1 >_0.

However, the term F(I,, + DoF)-l is bounded in magnitude even though F is not. For example, if

I F is ascalar, then IF(1+DoF)-1 :_ 1/Do. Thus the uncertainty set U incorporates both magnitude

and phase constraints.

11



Remark 4.2. Theorem 4.1 implies that robust stability of the uncertain system (Z) is equiva-

lent to a positive real condition. This fact can be compared to the results of [37] where it is shown

that the existence of a fixed Lyapunov function for the uncertain system

i(t) = (A + BoFCo)x(t),

Ompx(F) : 1,

is equivalent to a small gain condition. However, since the present result involves a phase constraint

not present a small gain condition (see Remark 4.1) one should expect to find a parameter dependent

Lyapunov function for the uncertain systems (Z) rather than a single Lyapunov function as in [37].

5. Robust Controller Synthesis for Positive Real Uncertainty

In this section we state the Robust Stabilizability Problem with Positive Real Uncertainty. The

problem involves the set U given by (4.6) of uncertain perturbations AA of the nominal (A, B, C)

system. The goal of the robust stability problem is to determine a static output feedback controller

that stabilizes the plant for all variations in U. See Figure 5.1.

Robust Stabillzability Problem with Positive Real Uncertainty. Determine K E

iRmXLt such that the closed-loop system consisting of the nth-order controlled plant

i(t) = (A+ AA)x(t) + Bu(t), t E [O,oo), (5.1)

measurements

y(t) = CX(t), (5.2)

and output feedback controller

u(t) = Ky(t), (5.3)

is asymptotically stable for all AA E U.

For each uncertain variation 4A E U, the closed-loop system can be written as

I (t) = (A+ BKC+ AA)x(t), t E [O,oo). (5.4)

The following result gives necessary and sufficient conditions for constructing a feedback gain K

that solves the Robust Stabilizability Problem with Positive Real Uncertainty. For the statement

of this result define

V11 QcT(cQcT)-,C, 1, , -

12



(Do + D T)-I

for arbitrary Q E R"x "' such that det CQCT # 0, and let R, and R2 be arbitrary real n x n and

m X m positive-definite matrices.

Theorem 5.1. There exists K E IR" xt that solves the Robust Stabilizability Problem with

Positive Real Uncertainty if and only if there exist n x n positive-definite matrices Q, P satisfying

0 = (A - BRjiBTPV - BoRoCo)Q + Q(A - BR-1BTPV - BoRoCo)T

+ QCoTRoc oQ + BoRoBo , (5.5)

0 = (A - BoRoCo + QCTROCo)T P + P(A - BoRoCo + QCoTRoCo) + R,

- PBRj'BTP+ .PBRjl BTpy.L. (5.6)

Furthermore, one such gain K is given by

K = -R-'BTpQCT(CqcT) -l. (5.7)

Proof. (Sufficiency). Suppose there exist n x n positive-definite matrices Q, P satisfying (5.5)

and (5.6). Then, with K given by (5.7), it follows that (5.5) is equivalent to

0 = (A + BKC - BoRoCo)Q + Q(A + BKC - BoRoCo)T + QCTROCOQ + BOROBT, (5.8)

which further implies

0=(A+ BKC)Q+Q(A+ BKC)T + (Bo - QCT)T (Do + DT)-1 (Bo - QCT)T. (5.9)

Furthermore, (5.6) is equivalent to

0 = (A+ BKC- BoRoCo+QCTRoCo)TP+ P(A+ BKC - BoRoCo + QCTRoCo) + R, + KTR 2K.

(5.10)

Note that (5.10) is an auxiliary equation and is only needed for computing the gain K. Furthermore,

note that (5.9) is equivalent to (3.46), or, equivalently (3.31). It now follows from Theorem 3.2 that

(A+ BKC, Bo, Co, Do) is strongly positive real which, by Theorem 4.1, implies that A+ BKC+ dAI is asymptotically stable for all AA E U.

(Necessity). It follows from Theorem 3.2 and Proposition 3.3 that (A + BKC, Bo,Co,Do) is

S strongly positive real if and only if there exists a nonnegative-definite solution Q to

0 = (A + BKC)Q + Q(A + BKC)T + (Bo - QCT)(Do - D T)-(Bo - QCT)T. (5.11)
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Now it follows from compactness arguments that the functional J(K) A tr Q(RI + CTKTR 2 KC)

must have a global minimum on the set

S A {K E lR"'XL: A + BKC is asymptotically stable}

under the assumption that BOBT is positive definite. Note that S is not empty by the assumption

that a robustly stabilizing K exists. In this case the necessary conditions for optimality of J(K),

which are equivalent to the existence of Q, P satisfying (5.5)-(5.6), must have a solution. 0

Next, we specialize Theorem 5.1 to the full state feedback case. When the full state is available,

i.e., C = I., the projection v = I,, so that vj = 0. In this case (5.7) becomes

K = -R2 'BTp (5.12)

and (5.5), (5.6) specialize to

0 =(A-BR-'B p-BoRoCo)Q+Q(A-BR-'B pB~~oTQToCoQ+BoR.BT,

(5.13)

o = (A - BoR 0 Co + qCo&Co) T P + P(A - BooCo + QCTRoCo) + R, - PBR lBTp.

(5.14)

It is interesting to note that even in the full state feedback case the result involves two coupled

Riccati equations.

A salient feature of (3.39) is the fact that the shift -IBC to the matrix A can be nonpositive.

That is, -- BC can represent a left shift in contrast to the usual a-shift, which is a uniform open-

loop right shift used t4 place the closed-loop poles to the left of -a, where a > 0[221. The use of

a left shift to the plant dynamics matrix has been used to model frequency uncertainty in lightly

damped flexible structures [35-401. Specifically, consider modal dynamics of the form

A = block-diag ([ -17i Wi _17 -'7 1),~7 (5.15)- W 1 - 1- 1 '' ' - W r -- r '

where %, > 0 denotes the decay rate and wi denotes modal frequency. Also consider uncertainty of

the form
r

AA Z= EaiAi, (5.16)
i=1
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I[ where or, E [-6,,68], i -,...,r, are real, uncertain parameters with given bounds 8,, and the

matrices A, are defined by

IA. = bocc-diag(O, ... O0[1 0 0..,) (5.17)

where the matrix [0 ]corresponds to the ith diagonal block of A. The skew symmetric

10, 1]o ,i 0l
structure of A. accounts for uncertainty in the ith modal frequency wi. In [10, 38-43] the Maximum

Entropy design approach is predicated upon a modified covariance (Lyapunov) equation of the form

-(A + S)Q +Q(A + )T+ .AQAT + V, (5.18)
i=1

where the shift S is defined by

Note that S has the form

S = block-diag(-162 I2 ,..., -6,12)

so that S effectively shifts each mode to the left by introducing a (fictitious) augmentation to

the open-loop damping. To relate (5.18) to (3.39), consider the case of a single uncertain modal

frequency by setting r = 1. Furthermore, let

so that (with B,C replaced by Bo,Co in (3.39)) -BoCo = -S2Th rema

terms b2AQA T +VI, in (5.18) can be shown to play a role similar to the terms -IQCTC!2 + IBB T

the form

ZA = 62F(I2 + OF) - l .  (.9

In the limiting case Do - 0, setting F = -+A 1 (so that F + FT > 0), (5.19) becomes

LA = OIJAI.

Hence U given by (5.16) can be used to capture frequency uncertainty of the form (5.16).

I
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1. Introduction

Linear-quadratic (LQ) control theory has been extensively developed over the past thirty years.

In its most fundamental form, linear-quadratic control is based upon the following assumptions:

s) the plant dynamics and measurement equations are linear in both the state and control
variables,

it) the performance measure to be minimized is quadratic in the state and control variables,

iis) the plant disturbances and measurement noise are additive Gaussian white noise or L2

signals.

In addition to these explicit assumptions the following implicit assumptions are crucial:

iv) the plant model is completely accurate,

v) the state and control variables are constrained in a mean-square or L2 sense.

Under these assumptions it is well known that the optimal feedback controller is linear [1].

In many practical situations, however, one or more of these assumptions may be violated. For

example, the plant and measurement equations may be nonlinear, the performance measure may

be nonquadratic, the disturbances may be nongaussian or nonadditive, the plant model may be

uncertain, or state variables and control effort may be limited by nonquadratic constraints. In

such cases there is no reason to expect that the optimal controller is linear. Rather, it should be

expected that nonlinear controllers will have better performance than the best linear controllers.

For example, if the plant model is nonlinear then nonlinear controllers can be used to account for

the global behavior of the plant [2-4]. Similarly, gain-scheduled controllers designed for multiple

plant linearizations constitute a widely used class of nonlinear controllers [5].

In the case of optimal H.. performance or robust stabiizability in the presence of unstructured

plant uncertainty, it has been shown [6-8] that nonlinear controllers offer no advantage over linear

controllers. However, if the plant uncertainty is structured and if a quadratic Lyapunov function

is assumed, then discontinuous nonlinear controllers have been shown to offer advantages over

linear controllers [9-14]. Continuous approximations to the discontinuous controllers of [9,10] have

been developed in [15,16]. Discontinuous controllers are also the focus of variable structure control

which also addresses the problem of plant uncertainty [17-20]. It is also shown in [21] that nonlinear

controllers can provide improved performance in a neighborhood of the worst case H.. disturbance

attenuation.
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jAdaptive controllers can be viewed as nonlinear controllers that operate in the presence of

significant plant uncertainty. Such controllers have been shown to stabilize uncertain systems that

cannot be stabilized by means of linear controllers 122-291.

With regard to state and control constraints, one of the most common nonlinearities arising

in applications is actuator saturation [30-32]. Linear-quadratic techniques, however, can, at best,

only impose bounds on the L2 norms of the state and control variables. Enforcing constraints of

the form 11z(t)iI _5 a or ilu(t)I :_ P pointwise in time requires nonlinear controllers.

In view of the advantages of nonlinear controllers over linear controllers, it is not surprising that

significant effort has been devoted to developing a theory of optimal nonlinear regulation [33-70].

The goal of the present paper is to provide a simplified framework for optimal nonlinear regulation

in terms of nonquadratic cost functionals. In accordance with practical motivation, we restrict

our attention to time-invariant systems on the infinite interval. In this case asymptotic stability is

guaranteed by means of a Lyapunov function for the closed-loop system. This Lyapunov function

is given as the solution to a steady-state form of the Hamilton-Jacobi-Bellman equation.

In future research, we intend to reverse the situation somewhat by fixing the structure of

the Lyapunov function, cast functional, and feedback law prior to optimization. In this case the

structure of the Lyapunov function can be viewed as providing the framework for controller synthesis

I by guaranteeing local or global asymptotic stability for a class of feedback controllers. The actual

controller chosen for implementation can thus be the member of this candidate class that minimizes

the given performance functional. In LQG theory, for example, the Lyapunov function is the

familiar quadratic functional V(z) = zTPz, while the gains for the linear feedback control are

chosen to minimize a quadratic performance functional. In summary, then, Lyapunov function

theory provides the framework, while optimization fixes the gains.

2. Nonquadratic Cost Evaluation

In this section we investigate the role of Lyapunov functions in evaluating nonquadratic cost

functionals. To expand upon the linear-quadratic case, we consider the problem of evaluating a

nonquadratic cost functional depending upon a nonlinear differential equation. It turns out that

Ithe cost functional can be evaluated in closed form so long as the cost functional is related in a

specific way to an underlying Lyapunov function. The basis for the following development is the

Ipaper [36] by Bass and Webber. Note that the results of this section make no explicit reference to

i2
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control.

In accordance with practical motivations, we restrict our attention to time-invariant systems on

the infinite horizon. Furthermore, for simplicity we shall define all functions globally and assume

that existence and uniqueness properties of the given differential equations are satisfied.

For the following result, let f: lR"1 -- 1R' and L: IR" --4 IR. We assume f(0) = 0. Let (')

denote derivative.

Lemma 2.1. Consider the system

i(t) = f zt)), z(O) = Zo, t > 0, (2.1)

with performance functional

J(zo) = f L(x(t))dt. (2.2)

Furthermore, assume there exists a C' function V: IR" --+ IR such that

v(o) = 0, (2.3)
V(z) > O, x E IR", zx 0, (2.4)

V'(z)f(z) < 0, EI", z o, (2.5)

L(z) + V'(z)f z) = 0, z E IR. (2.6)

Then z(t) = 0, t > 0, is a globally asymptotically stable solution to (2.1) with zo = 0. Furthermore,

J(xo) = V(o), o E IR". (2.7)

Proof. Let z(t), t > 0, satisfy (2.1). Then

V (z(t)) = d V(z(t)) = V'(z(t))f(z(t)), t > 0. (2.8)

Hence it follows from (2.5) that

I V(X(t)) <o, t > o, :(t) 0. (2.9)

Thus, by (2.3), (2.4), and (2.9) it follows that V(.) is a Lyapunov function for (2.1) and thus

z(t) --+ 0 as t - oo for all initial conditions z0. This proves global asymptotic stability of the

I solution z(t) = 0, t > 0. Now (2.8) implies that

0 = -V (X(t)) + V'(z(t))f(X(t))

3



Iand hence, by (2.6),
L(z(t)) = -V(z(t)) + L(z(t)) + V'(z(t))f(z(t))

j - V(z~t)).

Integrating over [0, t) yields

I j L(x(a))ds = -V(x(t)) + (ZoD.

Now letting t -- oo and noting that V(z(t)) --* 0, yields (2.7). 0

The main feature of Lemma 2.1 is the role played by the Lyapunov function V(z) both in

guaranteeing stability and in evaluating the functional J(zo). Let us illustrate this result with a

familiar example. Consider the linear system

z= A, (o) = o, (2.10)

with cost functional 

o(

J(zo) = o X'Rx dt, (2.11)

where R E IRnx" is positive-definite. If A is asymptotically stable then there exists a positive-

definite matrix P E IR 1"" satisfying

S0 - ATp + PA + R. (2.12)

Now define

I V(z) = Pz, (2.13)

which satisfies (2.3) and (2.4). irthermore, with f(z) = Ax and L(z) - zTRZ it follows that

V'(z)f (z) - 2zT PAz - zT(ATp + PA)x = -zT Rz = -L(x),

which verifies (2.5) and (2.6). Hence

J(Xo) = 4oTpo,

which is a familiar result from linear-quadratic theory.

Remark 2.1. Note that if (2.6) is valid, then (2.5) is equivalent to

L (x) > 0, x E IR', z :$ 0. (2.14)

4



More generally, assume A is asymptotically stable, let P be given by (2.12), and consider the

case

L(z) zT Rz + h(z), (2.15)

f (z) = Az + N(z), (2.16)

V(z) = :TpZ+ g(z), (2.17)

where h(-) and g(') are nonquadratic and N(-) is nonlinear. To satisfy (2.6) we require that

ITRX + h(z) + [2zTP + g'(x)][Az + N(z)] = 0. (2.18)

Our goal is to study (2.18) under a variety of choicet for h(-),g(.), and N(-). For convenience,

rewrite (2.18) as

ZT(ATP + PA + R)z + g'(z)Az + h(z) + g'(z)N(z) = 0. (2.19)

If A is asymptotically stable, then we can choose P to satisfy (2.12) as in the linear-quadratic case.

Next, suppose N(z) = 0. Then (2.19) is satisfied if

g'(zx)Az + h(z) = 0. (2.20)

The following lemma, which is quoted in [36], will be useful for satisfying (2.20).

Lemma 2.2. Let A E ]R " 'x be asymptotically stable and let hk: IR' --+ IR be a nonnegative-

definite homogeneous k-form (k even). Then there exists a unique nonnegative-definite homoge-

neous k-form gt: IR' -- IR such

Sg'(z)Az + hk(z) = 0, z E IR". (2.21)

Proof. The result can be shown using the Kronecker product representation of multilinear

I functions. Details will appear in an expanded version of this paper. 0

ISuppose now that h(z) is of the form

h(z I - h2.(z), (2.22)
i&,=2

where, for v = 2,. .. , r, h 2 ,: IR" --. IN is a nonnegative-definite homogeneous 2v-form. Now,

using Lemma 2.2, let g2,,: IR^ --+ IR be the nonnegative-definite homogeneous 2v-form satisfying

I



and define

g(z) -- Z gy(z). (2.24)

Since

I' g(Z) 92

summing (2.23) over Y yields (2.20). Since (2.6) is now satisfied, (2.9) implies that

I J~zO) = zo + g(zo). (2.25)

I As another illustration of condition (2.18), suppose that V(x) is constrained to be of the form

I V(z) = TP +lzT MIZ) 2, (2.26)

where P satisfies (2.12) and M is an n x n symmetric matrix. Then, with N(x) = 0 (2.18) yields

I h(z) = -(z TMZ)ZT (ATM + MA)z. (2.27)

S If A is an n x n symmetric matrix and Mr is given by

0= ATM+ MA + R, (2.28)

then h(z) satisfying (2.18) is of the form

I h(z) = (z T M:)(z T fz). (2.29)

IThus, if V(z) is of the form (2.26), then, by utilizing (2.28), condition (2.18) is satisfied if L(z) has

the form

L(x) = xTRZ + (ZTMZ)(ZTA,). (2.30)

In the next section we apply Lemma 2.1 to the problem of optimal nonlinear feedback control.

The relation (2.18) shall play a key role with greater complexity arising from the fact that the

nonlinear dynamics term N(z) will be nonzero.

3. Optimal Control

In this section, we extend the development of Section 2 to obtain a characterization of optimal

feedback controllers. These conditions are essentially a specialization of the Hamilton-Jacobi-

IBellman (HJB) conditions for the time-invariant, infinite-horizon case. For this problem the HJB

partial differential equation reduces to a purely algebraic relationship.

I 6



We begin with a notion of optimality involving only a Lyapunov function. Hence let f: IR" x

IRM --+ IRO, assume that f(0,0) = 0, and consider the controlled system

i(t) = f((t),U(t)), z(O) = Zo, t > 0. (3.1)

The control u(.) in (3.1) is restricted to the class of admissible controls consisting of measurable

functions u: [0, oo) --+ IR' buch that

u(t)E E , t > 0, (3.2)

where 0 C IR' is given.

Definition 3.1. Let V: IR' --i IR be a C1 function. The function 0: IR' -. 1 is optimal

with respect to V if

V'(x)f(x,o(x))<5V'(x)f(z,u), E IR", uE,*. (3.3)

Note that if V satisfies (2.3), (2.4), and

V(x)f(z, 4(z)) < 0, x r= IR' , x€ 96 0, (3.4)

then V is a Lyapunov function for the closed-loop system

:i(t) = f(x(t),#(z(t)), z(O) = Xo, t > 0, (3.5)

that is, system (3.1) with u(t) = O(z(t)), t > 0. The inequality (3.3) thus characterizes feedback

controllers that optimize the decay rate of the closed-loop system as measured by the Lyapunov

derivative.

To illustrate Definition 3.1, consider the linear system

i(t) = Az(t) + Bu(t), x(0) = zo, t > 0, (3.6)

where A is asymptotically stable and the control constraint set *2 is characterized by

lui(tl _< i, t2:0, #= l ... ,m , (3.7)

for given positive constants a,,..., a,.. Define the quadratic Lyapunov function

V(z) = zTpX, z E IR", (3.8)

7



where P is the unique positive-definite solution to

0 - ATp+PA+R (3.9)

for an arbitrary n x n positive-definite matrix R. Then

V'(z)f(z,u) = -zTRz + 2(BTpZ)TU, E IR, u E IR". (3.10)

It is easy to see that a feedback control 4, - (...... ,4 ,,)T: IR n -* 17 that is optimal with respect

to V is given by

4(Z) = -aisgn(B T pX),, i=1,...,m. (3.11)

Note that if (BTpz), = 0, then V'(z)f(z, u) is independent of uj. Hence the value of 4,,(z) has no

effect on (3.3). If in place of (3.7) we constrain u(t) by

I1u(t)II < a, t > 0, (3.12)

where I I denotes the Euclidean norm and a > 0, then a feedback function 4' that is optimal with

respect to V is given by

4,(x)- -a=BTpZ, if BTpz 6 0, (3.13)
IIBTpzII

with 4,(z) arbitrary if BTpZ = 0.

We now turn to the problem of characterizing feedback controllers that minimize a performance

functional. Let L: IR" x IR ' - IR and, for p E Rt, define

H(x,p, u) A- L(x,u) + pTf(X,U).

Theorem 3.1. Consider the controlled system (3.1) with performance functional

J(zo, u(.)) j- L(z(t),u(t))dt. (3.14)

Assume that there exist a C 1 function V: Wt --+ IR and a function 4,: IR" -9 ( such that

V(0) = 0, (3.15)

V(z)>O0, x E n'" X96o, (3.16)

4(0) = 0, (3.17)

V'(z)f(x,4(x))<0, X R , x$0, (3.18)

H (x, V'IT(), O(Z)) = , Z E Ra, (3.19)

H(z,VIT(z),u) _ 0, z E IRn, u E 17. (3.20)

8



Then, with the feedback control u(.) = ((),the solution x(t) = 0, t > 0, of the closed-loop

system is asymptotically stable, and

J(xo,O4(.())) = V(zo). (3.21)

Furthermore, the feedback control u(-) = 4i~z(.)) minimizes J(xo, u(-)) in the sense that

J(T,0T())= U-minso J(zo' U(.), (3.22)
u)EU(zo

where

Li(xo) A {u(.): u(-) is admissible and x(.) given by (3.1) satisfies Jimn V(x(t)) = 0}.

Proof. Global asymptotic stability and (3.21) are obtained by using (3.15)-(3.19) and applying

Lemma 2.1 to the closed-loop system (3.5). To prove (3.22), let u(.) E U(zo) and let x(.) be the

solution to (3.1). Then it follows that

V"zWt)) = V'(x(t))f WOt, U(t))

or

0 WOV~~t) + V(zWO))f (:(t), U(t)).-

Hence

L(z-(t), u(t)) = -1V(x(t)) + L(x(t), u(t)) + V'(z(t))f (w(t), u(t))

= -V (x(t)) + H(z(t), V' T (__(t)), u(t)).

Now using the fact that u(-) E Z(xo) along with (3.20) and (3.21), we obtain

J(zo, U(.) =o f[V((t)) + H(x(t), V'T ((t)), u(t))]dt

= V(ZO) + jo H(x(t),VIT(x(t)), u(t))dt

> V(zo)

= xo

which yields (3.22). 0

The principal feature of Theorem 3.1 is that the optimal control law ua = O(z) is a feedback

controller. Furthermore, this control is an optimal stabilizing control independent of the initial

condition zo.

9



IRemark 3.1. If (3.19) and (3.20) are satisfied, then it follows that

1 L(x, (z))+V'(z)f(z, (z))<_L(x,u)+V'(z)f(x,u), zx E ', u E . (3.23)

If L(z, u) is independent of u, then (3.23) is equivalent to

I V'(x)f(x,O(Z)) S V'(x)f(x,u), z E IR", u En, (3.24)

I which is precisely condition (3.3). Thus, in this case conditions (3.19) and (3.20) imply that the

feedback control u(-) = O(z(-)) is optimal with respect to V.

I Now let us illustrate Theorem 3.1 with some examples. We begin with the simplest case,

namely, the linear-quadratic regulator. Hence consider the controlled system

i=Az+Bu, z(0)=zo, t>0, (3.25)

I with performance functional

I J(zo,u(-)) = JoZ[zTRix + UTR2u]dt, (3.26)

where z E IR', u E IR", and where R, and R2 are positive definite. Thus, L(z, u) has the form

L(z, u) = zTR x + UTR 2 u. (3.27)

I Furthermore, assume that V(z) is quadratic, that is,

V(z) = 2 TpZ (3.28)

where P is positive definite. Consequently, we have

H(z,VT(z), u) = ZT (ATp + PA + RI)z + 2ZTPBu + UT R2 u.

1 If (3.19) and (3.20) are satisfied, then u = O(z) must minimize H(z, V'(z), u). Hence, setting

I £H(x, VT(z),u) = 0 (3.29)

yields

U = 0(T) = -R lBTpZ. (3.30)

To check (3.19) we note that

H(z,V'(x), O(z)) = ZT(ATp + PA + R, - PSP)x,

10



where S = BRB T. Thus, (3.19) holds if P is chosen to satisfy

O=ATp+ PA + Ri - PSP. (3.31)

The closed-loop system has the form

= (A - SP)z, z(O) = zo, t > 0. (3.32)

Writing (3.31) as

0 = (A - SP)TP + P(A - SP) + Ri, (3.33)

it follows that A - SP is asymptotically stable. Finally, it follows using (3.31) that

H(x, VI T (Z), U) = (u + R-l BTPZ)T R2 (U + R2 'BTPZ) (3.34)

so that (3.20) is satisfied. In summary, the solution u = 4(z) to the linear-quadratic problem is

given by (3.30) where P is the positive-definite solution to (3.31).

Next, we consider the case of a nonquadratic cost and nonlinear feedback control. Hence assume

that L(z, u), f (x, u), and V(z) are of the form

L(:,u) = xTRi + h(z) + UTR 2 U, (3.35)

f(XIu) = Ax + Bu, (3.36)

V(X) = =TpX + g(x). (3.37)

With this notation we have

H (x, VT(z), u) = XT Rix + h(z) + ILTR 2U + [2XT p + g'(x)] [Ax + Eu].

Again setting P H(z,VIT(z), u) = 0 we obtain

U = 4(z) = -R2lBTpz - !R,1BTg'(z). (3.38)

This yields

H(z, VIT(z),O(_)) = zT (ATP+PA+R, -PSP)z+h(z)+g'(z)(A- SP)z- gI(z)SgIT(z). (3.39)

To satisfy (3.19), let P satisfy (3.31) and require that

h(z) + g'(z)(A - SP)z - 1gI(X)Sg'T(X) = 0, z E IR". (3.40)
4



With (3.31) and (3.40) it follows that (3.19) is satisfied. Furthermore, it can be shown that

H (x, V T (z), u) =[ - ((z)]TR 2 u - -O(X)] (3.41)

so that (3.20) holds.

Returning to (3.40), let us consider the approach of [36]. Suppose that for V, = 2,..., r, h21,(Z) is

a given nonnegative-definite homogeneous 2,-form. Since A - SP is asymptotically stable, Lemma

2.2 implies that, for v = 2,... ,r, there exists a nonnegative-definite homogeneous 2v,-form g92"(z)

satisfying

h2 ,(z) + g',(z)(A- SP)x = 0, Y = 2,... ,r. (3.42)

Then (3.40) is satisfied with h(z) and g(z) defined by

h(z) = E h 2 .(X) + lg'(xT)SgIT(z), (3.43)
v=24

r

g(x) = Eg2,(z). (3.44)

As discussed in [36], the term *g'(z)SgrT(z) appearing in h(z) in (3.43) is somewhat artificial in

the sense that it cannot be specified arbitrarily. It is interesting to note, however, that with h(z)

given by (3.43), the performance functional has the form

FCO

J(xo,(')) = TRz + E h2 ,(x) + uTR 2 U + qNL(z)R24NL(X)Idt. (3.45)

In (3.45), ONL(X) is the nonlinear part of the optimal feedback control, that is,

O(Z) = OL (X) + NL (Z), (3.46)

where

OOL(z) - -R-1BTpz, ONL(z) = -IR21BTgIT(#). (3.47)

As another example, suppose we require that V(z) be of the form

V(z) = zTP z + I(XTMz)2, (3.48)

which corresponds to (3.37) with g(z) = .I(ZTMZ)2 . Thus (3.38) specializes to

u = O(x) = -R2 BTpZ - R21BT (XTMX)Mz (3.49)

12



and (3.40) becomes

h(z) + (XTMX)XT [(A - Sp)TM + M(A - SP)]x - (XTMX) 2 XTMSMX = 0. (3.50)

To satisfy (3.50), let R be an arbitrary n x ft symmetric matrix and, since A - SP is asymptotically

stable, let M be the unique symmetric solution to

(A - Sp)TM + M(A - SP) + R = 0. (3.51)

Now (3.50) is satisfied with

h(z) = (x TMZ)(ZT Rz) + (XTMX) 2 ZTMSMX (3.52)

A stochastic. version of this problem was treated in [491. In 1491 the matrix R is chosen to be

R, + MSM so that (3.49) becomes a Riccati equation

(A -Sp)TM +M(A -SP) +Ri +MSM =0. (3.53)

See equation (23) of [491 setting WV2 = 0.
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